Аналіз літературних джерел за темою “Віртуальне геологічне відслонення”

dc.citation.epage39
dc.citation.journalTitleСучасні досягнення геодезичної науки та виробництва
dc.citation.spage30
dc.citation.volumeІ (43)
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National Universitycopyright=
dc.contributor.authorОлійник, М.
dc.contributor.authorБубняк, І.
dc.contributor.authorOliinyk, M.
dc.contributor.authorBubniak, I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-06-19T10:18:58Z
dc.date.available2023-06-19T10:18:58Z
dc.date.created2022-02-22
dc.date.issued2022-02-22
dc.description.abstractПроаналізовано літературні джерела, що стосуються віртуального геологічного відслонення. Для цього використано наукометричні бази Web of Science, Scopus, ScienceDirect, а також реферативні журнали “Геологія”, “Геодезія” та український реферативний журнал “Джерело”. Розглянуто тенденції застосування фотограмметрії та лазерного сканування для геологічних завдань.
dc.description.abstractThe analysis of the literature sources concerning “virtual geological outcrop” is carried out. For this purpose, the scientometric databases Web of Science, Scopus, ScienceDirect were used, as well as the abstract journals RH “Geology”, RH “Geodezy” and the Ukrainian abstract journal “Dzherelo”. Trends in the use of photogrammetry and laser scanning for geological problems are analyzed.
dc.format.extent30-39
dc.format.pages10
dc.identifier.citationОлійник М. Аналіз літературних джерел за темою “Віртуальне геологічне відслонення” / М. Олійник, І. Бубняк // Сучасні досягнення геодезичної науки та виробництва. — Львів : Видавництво Львівської політехніки, 2022. — Том І (43). — С. 30–39.
dc.identifier.citationenOliinyk M. Analize of literature sources on the topic “Virtual geological outcrop” / M. Oliinyk, I. Bubniak // Modern Achievements of Geodesic Science and Industry. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol I (43). — P. 30–39.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59259
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofСучасні досягнення геодезичної науки та виробництва, 2022
dc.relation.ispartofModern Achievements of Geodesic Science and Industry, 2022
dc.relation.referencesAbellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., & Asensio, E. (2011). Rockfall monitoring by
dc.relation.referencesTerrestrial Laser Scanning – case study of the basaltic
dc.relation.referencesrock face at Castellfollit de la Roca (Catalonia,
dc.relation.referencesSpain). Natural Hazards and Earth System Sciences, 11(3), 829–841.
dc.relation.referencesArrowsmith, J. R., & Zielke, O. (2009). Tectonic
dc.relation.referencesgeomorphology of the San Andreas Fault zone from
dc.relation.referenceshigh resolution topography: An example from the
dc.relation.referencesCholame segment. Geomorphology, 113(1–2), 70–81.
dc.relation.referencesBaltsavias, E. P. (1999). A comparison between
dc.relation.referencesphotogrammetry and laser scanning. ISPRS Journal
dc.relation.referencesof photogrammetry and Remote Sensing, 54(2–3), 83–94.
dc.relation.referencesBellian, J. A., Kerans, C., & Jennette, D. C. (2005).
dc.relation.referencesDigital outcrop models: applications of terrestrial
dc.relation.referencesscanning lidar technology in stratigraphic modeling.
dc.relation.referencesJournal of sedimentary research, 75(2), 166–176.
dc.relation.referencesBlistan, P., Kovanič, Ľ., Zelizňaková, V., & Palková, J.
dc.relation.references(2016). Using UAV photogrammetry to document
dc.relation.referencesrock outcrops. Acta Montanistica Slovaca, 21(2).
dc.relation.referencesBourke, P. (2014). Automatic 3D reconstruction: An
dc.relation.referencesexploration of the state of the art. GSTF Journal on
dc.relation.referencesComputing (JoC), 2(3).
dc.relation.referencesBrush, J. A. (2015). Evaluating methods of field-based 3D
dc.relation.referencesvisualization and their application to mapping
dc.relation.referencesmetamorphic terranes: An example from the Panamint
dc.relation.referencesMountains, California. The University of Texas at El Paso.
dc.relation.referencesBubniak, I. M., Bubniak, A. M., Gavrilenko, O. D.,
dc.relation.referencesNikulishyn, V. I., & Golubinka, I. I. (2019, May).
dc.relation.referencesUsing laser scanning and digital photogrammetry for
dc.relation.referencescreation of virtual geological outcrops: Case studies
dc.relation.referencesfrom the west of Ukraine. In 18th International
dc.relation.referencesConference on Geoinformatics-Theoretical and Applied
dc.relation.referencesAspects (Vol. 2019, No. 1, 1–5). European Association
dc.relation.referencesof Geoscientists & Engineers.
dc.relation.referencesBubniak, І. М., Bubniak, А. М., Shylo, Y. О., &
dc.relation.referencesShylo, О. М. (2019). Use of digital photographic
dc.relation.referencesmethod for the creation of virtual geological outcrops,
dc.relation.referencescase studies on the clastic dikes from Western
dc.relation.referencesUkraine. Journal of Donetsk Mining Institute, (1), 154–159.
dc.relation.referencesCaravaca, G., Le Mouélic, S., Mangold, N., L’Haridon, J.,
dc.relation.referencesLe Deit, L., & Massé, M. (2020). 3D digital outcrop
dc.relation.referencesmodel reconstruction of the Kimberley outcrop (Gale
dc.relation.referencescrater, Mars) and its integration into Virtual Reality
dc.relation.referencesfor simulated geological analysis. Planetary and
dc.relation.referencesSpace Science, 182, 104808.
dc.relation.referencesCalvo, R., & Ramos, E. (2015). Unlocking the correlation
dc.relation.referencesin fluvial outcrops by using a DOM-derived virtual
dc.relation.referencesdatum: Method description and field tests in the
dc.relation.referencesHuesca fluvial fan, Ebro Basin (Spain).
dc.relation.referencesGeosphere, 11(5), 1507–1529.
dc.relation.referencesCawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W.,
dc.relation.references& Totake, Y. (2017). LiDAR, UAV or compassclinometer? Accuracy, coverage and the effects on
dc.relation.referencesstructural models. Journal of Structural Geology, 98, 67–82.
dc.relation.referencesCorradetti, A., Tavani, S., Russo, M., Arbués, P. C., &
dc.relation.referencesGranado, P. (2017). Quantitative analysis of folds by
dc.relation.referencesmeans of orthorectified photogrammetric 3D models:
dc.relation.referencesa case study from Mt. Catria, Northern Apennines,
dc.relation.referencesItaly. The Photogrammetric Record, 32(160), 480–496.
dc.relation.referencesFalkingham, P. L. (2012). Acquisition of high resolution
dc.relation.referencesthree-dimensional models using free, opensource, photogrammetric software. Palaeontologia
dc.relation.referenceselectronica, 15(1), 15.
dc.relation.referencesGarcía-Sellés, D., Granado, P., Muñoz, J. A., Gratacos, O.,
dc.relation.referencesCarrera, N., & Arbues, P. (2014). Capture and
dc.relation.referencesGeological Data Extraction: Tools for a Better
dc.relation.referencesAnalysis and Digital Outcrop Modelling. In Vertical
dc.relation.referencesGeol. Conf., Switzerland, 5–7 February.
dc.relation.referencesGuerin, A., Nguyen, L., Abellán, A., Carrea, D.,
dc.relation.referencesDerron, M. H., & Jaboyedoff, M. (2015). Common
dc.relation.referencesproblems encountered in 3D mapping of geological
dc.relation.referencescontacts using high-resolution terrain and image data.
dc.relation.referencesEuropean Journal of Remote Sensing, 48(1), 661–672.
dc.relation.referencesHumair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J. L.,
dc.relation.references& Jaboyedoff, M. (2015). Geological layers
dc.relation.referencesdetection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss
dc.relation.referencesJura Mountains. European Journal of Remote
dc.relation.referencesSensing, 48(1), 541–568.
dc.relation.referencesJames, M. R., & Robson, S. (2012). Straightforward
dc.relation.referencesreconstruction of 3D surfaces and topography with a
dc.relation.referencescamera: Accuracy and geoscience application. Journal
dc.relation.referencesof Geophysical Research: Earth Surface, 117(F3).
dc.relation.referencesJones, R. R., Mccaffrey, K. J., Imber, J., Wightman, R.,
dc.relation.referencesSmith, S. A., Holdsworth, R. E., ... & Wilson, R. W.
dc.relation.references(2008). Calibration and validation of reservoir
dc.relation.referencesmodels: the importance of high resolution, quantitative
dc.relation.referencesoutcrop analogues. Geological Society, London,
dc.relation.referencesSpecial Publications, 309(1), 87–98.
dc.relation.referencesJordan, B. R. (2015). A bird’s-eye view of geology: The
dc.relation.referencesuse of micro drones/UAVs in geologic fieldwork and
dc.relation.referenceseducation. GSA today, 25(7), 50–52
dc.relation.referencesKeogh, K. J., Leary, S., Martinius, A. W., Scott, A. S.,
dc.relation.referencesRiordan, S., Viste, I., ... & Howell, J. (2014). Data
dc.relation.referencescapture for multiscale modelling of the Lourinha
dc.relation.referencesFormation, Lusitanian Basin, Portugal: an outcrop
dc.relation.referencesanalogue for the Statfjord Group, Norwegian
dc.relation.referencesNorth Sea. Geological Society, London, Special
dc.relation.referencesPublications, 387(1), 27–56.
dc.relation.referencesKelleher, C., Scholz, C. A., Condon, L., & Reardon, M.
dc.relation.references(2018). Drones in geoscience research: the sky is the
dc.relation.referencesonly limit. Eos, 99.
dc.relation.referencesLapponi, F., Casini, G., Sharp, I., Blendinger, W.,
dc.relation.referencesFernández, N., Romaire, I., & Hunt, D. (2011). From
dc.relation.referencesoutcrop to 3D modelling: a case study of a
dc.relation.referencesdolomitized carbonate reservoir, Zagros Mountains,
dc.relation.referencesIran. Petroleum Geoscience, 17(3), 283–307.
dc.relation.referencesLebel, D., & Da Roza, R. (1999). An innovative approach
dc.relation.referencesusing digital photogrammetry to map geology in
dc.relation.referencesthe Porcupine Hills, Southern Alberta, Canada.
dc.relation.referencesPhotogrammetric engineering and remote sensing,65, 281–288.
dc.relation.referencesMarques Jr, A., Horota, R. K., de Souza, E. M.,
dc.relation.referencesLupssinskü, L., Rossa, P., Aires, A. S., ... &
dc.relation.referencesCazarin, C. L. (2020). Virtual and digital outcrops in
dc.relation.referencesthe petroleum industry: A systematic review. EarthScience Reviews, 103260.
dc.relation.referencesMcCaffrey, K. J. W., Feely, M., Hennessy, R., &
dc.relation.referencesThompson, J. (2008). Visualization of folding in
dc.relation.referencesmarble outcrops, Connemara, western Ireland: An
dc.relation.referencesapplication of virtual outcrop technology.
dc.relation.referencesGeosphere, 4(3), 588–599.
dc.relation.referencesMicheletti, N., Chandler, J.H. and Lane, S. N., 2015.
dc.relation.referencesStructure from motion (SFM) photogrammetry. In:
dc.relation.referencesClarke, L. E. and Nield, J. M. (Eds.) Geomorphological
dc.relation.referencesTechniques (Online Edition). London: British
dc.relation.referencesSociety for Geomorphology. ISSN: 2047-0371,
dc.relation.referencesChap. 2, Sec. 2.2.
dc.relation.referencesNex, F. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives.
dc.relation.referencesInternational archives of the photogrammetry,
dc.relation.referencesremote sensing and spatial information sciences, 38(1/C22).
dc.relation.referencesNieminski, N. M., & Graham, S. A. (2017). Modeling
dc.relation.referencesstratigraphic architecture using small unmanned
dc.relation.referencesaerial vehicles and photogrammetry: Examples from
dc.relation.referencesthe Miocene East Coast Basin, New Zealand.
dc.relation.referencesJournal of Sedimentary Research, 87(2), 126–132.
dc.relation.referencesRarity, F., Van Lanen, X. M. T., Hodgetts, D.,
dc.relation.referencesGawthorpe, R. L., Wilson, P., Fabuel-Perez, I., &
dc.relation.referencesRedfern, J. (2014). LiDAR-based digital outcrops for
dc.relation.referencessedimentological analysis: workflows and techniques.
dc.relation.referencesGeological Society, London, Special Publications, 387(1), 153–183.
dc.relation.referencesRemondino, F., Rizzi, A., Girardi, S., Petti, F. M., &
dc.relation.referencesAvanzini, M. (2010). 3D Ichnology – recovering
dc.relation.referencesdigital 3D models of dinosaur footprints. The
dc.relation.referencesPhotogrammetric Record, 25(131), 266–282.
dc.relation.referencesRittersbacher, A., Buckley, S. J., Howell, J. A.,
dc.relation.referencesHampson, G. J., & Vallet, J. (2014). Helicopterbased laser scanning: a method for quantitative analysis
dc.relation.referencesof large-scale sedimentary architecture. Geological
dc.relation.referencesSociety, London, Special Publications, 387(1), 185–202.
dc.relation.referencesRosnell, T., & Honkavaara, E. (2012). Point cloud
dc.relation.referencesgeneration from aerial image data acquired by a
dc.relation.referencesquadrocopter type micro unmanned aerial vehicle
dc.relation.referencesand a digital still camera. Sensors, 12(1), 453–480.
dc.relation.referencesSaputra, A., Rahardianto, T., & Gomez, C. (2017, July).
dc.relation.referencesThe application of structure from motion (SfM) to
dc.relation.referencesidentify the geological structure and outcrop studies.
dc.relation.referencesIn AIP Conference Proceedings, Vol. 1857, No. 1, 030001. AIP Publishing LLC.
dc.relation.referencesTony-Cristian, D., & Iulian-Vasile, B. (2017). 3-D minerals.
dc.relation.referencesAuxiliary material for the Physical Geology classes.
dc.relation.referencesAnalele Stiintifice de Universitatii AI Cuza din Iasi.
dc.relation.referencesSect. 2, Geologie, 63(1/2), 25–35.
dc.relation.referencesTrinks, I., Clegg, P., McCaffrey, K., Jones, R., Hobbs, R.,
dc.relation.referencesHoldsworth, B., ... & Wilson, R. (2005). Mapping and
dc.relation.referencesanalysing virtual outcrops. Visual Geosciences, 10(1), 13–19.
dc.relation.referencesViana, C. D., Endlein, A., da Cruz Campanha, G. A., &
dc.relation.referencesGrohmann, C. H. (2016). Algorithms for extraction
dc.relation.referencesof structural attitudes from 3D outcrop models.
dc.relation.referencesComputers & geosciences, 90, 112–122.
dc.relation.referencesVollgger, S. A., & Cruden, A. R. (2016). Mapping folds
dc.relation.referencesand fractures in basement and cover rocks using
dc.relation.referencesUAV photogrammetry, Cape Liptrap and Cape
dc.relation.referencesPaterson, Victoria, Australia. Journal of Structural
dc.relation.referencesGeology, 85, 168–187.
dc.relation.referencesWestoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J.,
dc.relation.references& Reynolds, J. M. (2012). Structure-fromMotion’photogrammetry: A low-cost, effective tool
dc.relation.referencesfor geoscience applications. Geomorphology, 179, 300–314.
dc.relation.referencesWilkinson, M. W., Jones, R. R., Woods, C. E., Gilment, S. R.,
dc.relation.referencesMcCaffrey, K. J. W., Kokkalas, S., & Long, J. J.
dc.relation.references(2016). A comparison of terrestrial laser scanning
dc.relation.referencesand structure-from-motion photogrammetry as methods
dc.relation.referencesfor digital outcrop acquisition. Geosphere, 12(6), 1865–1880.
dc.relation.referencesГлотов, В., Церклевич, А., Збруцький, О., Колісніченко, В., Прохорчук, О., Карнаушенко, Р., &
dc.relation.referencesГалецький, В. (2014). Аналіз і перспективи аерознімання з безпілотного літального апарата.
dc.relation.referencesСучасні досягнення геодезичної науки та виробництва, 1(27).
dc.relation.referencesenAbellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., & Asensio, E. (2011). Rockfall monitoring by Terrestrial
dc.relation.referencesenLaser Scanning – case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Natural Hazards
dc.relation.referencesenand Earth System Sciences, 11(3), 829–841.
dc.relation.referencesenArrowsmith, J. R., & Zielke, O. (2009). Tectonic geomorphology of the San Andreas Fault zone from high resolution
dc.relation.referencesentopography: An example from the Cholame segment. Geomorphology, 113(1–2), 70–81.
dc.relation.referencesenBaltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of photogrammetry
dc.relation.referencesenand Remote Sensing, 54(2–3), 83–94.
dc.relation.referencesenBellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital outcrop models: applications of terrestrial scanning lidar
dc.relation.referencesentechnology in stratigraphic modeling. Journal of sedimentary research, 75(2), 166–176.
dc.relation.referencesenBlistan, P., Kovanič, Ľ., Zelizňaková, V., & Palková, J. (2016). Using UAV photogrammetry to document rock outcrops.
dc.relation.referencesenActa Montanistica Slovaca, 21(2).
dc.relation.referencesenBourke, P. (2014). Automatic 3D reconstruction: An exploration of the state of the art. GSTF Journal on Computing
dc.relation.referencesen(JoC), 2(3).
dc.relation.referencesenBrush, J. A. (2015). Evaluating methods of field-based 3D visualization and their application to mapping metamorphic
dc.relation.referencesenterranes: An example from the Panamint Mountains, California. The University of Texas at El Paso.
dc.relation.referencesenBubniak, I. M., Bubniak, A. M., Gavrilenko, O. D., Nikulishyn, V. I., & Golubinka, I. I. (2019, May). Using laser
dc.relation.referencesenscanning and digital photogrammetry for creation of virtual geological outcrops: Case studies from the west of
dc.relation.referencesenUkraine. In 18th International Conference on Geoinformatics-Theoretical and Applied Aspects (Vol. 2019, No. 1, 1–5).
dc.relation.referencesenEuropean Association of Geoscientists & Engineers.
dc.relation.referencesenBubniak, І. М., Bubniak, А. М., Shylo, Y. О., & Shylo, О. М. (2019). Use of digital photographic method for the
dc.relation.referencesencreation of virtual geological outcrops, case studies on the clastic dikes from Western Ukraine. Journal of Donetsk
dc.relation.referencesenMining Institute, (1), 154–159.
dc.relation.referencesenCaravaca, G., Le Mouélic, S., Mangold, N., L’Haridon, J., Le Deit, L., & Massé, M. (2020). 3D digital outcrop model
dc.relation.referencesenreconstruction of the Kimberley outcrop (Gale crater, Mars) and its integration into Virtual Reality for simulated
dc.relation.referencesengeological analysis. Planetary and Space Science, 182, 104808.
dc.relation.referencesenCalvo, R., & Ramos, E. (2015). Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum:
dc.relation.referencesenMethod description and field tests in the Huesca fluvial fan, Ebro Basin (Spain). Geosphere, 11(5), 1507–1529.
dc.relation.referencesenCawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W., & Totake, Y. (2017). LiDAR, UAV or compass-clinometer?
dc.relation.referencesenAccuracy, coverage and the effects on structural models. Journal of Structural Geology, 98, 67–82.
dc.relation.referencesenCorradetti, A., Tavani, S., Russo, M., Arbués, P. C., & Granado, P. (2017). Quantitative analysis of folds by means of
dc.relation.referencesenorthorectified photogrammetric 3D models: a case study from Mt. Catria, Northern Apennines, Italy. The
dc.relation.referencesenPhotogrammetric Record, 32(160), 480–496.
dc.relation.referencesenFalkingham, P. L. (2012). Acquisition of high resolution three-dimensional models using free, open-source,
dc.relation.referencesenphotogrammetric software. Palaeontologia electronica, 15(1), 15.
dc.relation.referencesenGarcía-Sellés, D., Granado, P., Muñoz, J. A., Gratacos, O., Carrera, N., & Arbues, P. (2014). Capture and Geological
dc.relation.referencesenData Extraction: Tools for a Better Analysis and Digital Outcrop Modelling. In Vertical Geol. Conf.,
dc.relation.referencesenSwitzerland, 5–7 February.
dc.relation.referencesenGuerin, A., Nguyen, L., Abellán, A., Carrea, D., Derron, M. H., & Jaboyedoff, M. (2015). Common problems
dc.relation.referencesenencountered in 3D mapping of geological contacts using high-resolution terrain and image data. European Journal of
dc.relation.referencesenRemote Sensing, 48(1), 661–672.
dc.relation.referencesenHumair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J. L., & Jaboyedoff, M. (2015). Geological layers detection and
dc.relation.referencesencharacterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains. European
dc.relation.referencesenJournal of Remote Sensing, 48(1), 541–568.
dc.relation.referencesenJames, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera:
dc.relation.referencesenAccuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3).
dc.relation.referencesenJones, R. R., Mccaffrey, K. J., Imber, J., Wightman, R., Smith, S. A., Holdsworth, R. E., ... & Wilson, R. W. (2008).
dc.relation.referencesenCalibration and validation of reservoir models: the importance of high resolution, quantitative outcrop
dc.relation.referencesenanalogues. Geological Society, London, Special Publications, 309(1), 87–98.
dc.relation.referencesenJordan, B. R. (2015). A bird’s-eye view of geology: The use of micro drones/UAVs in geologic fieldwork and
dc.relation.referenceseneducation. GSA today, 25(7), 50–52
dc.relation.referencesenKeogh, K. J., Leary, S., Martinius, A. W., Scott, A. S., Riordan, S., Viste, I., ... & Howell, J. (2014). Data capture for
dc.relation.referencesenmultiscale modelling of the Lourinha Formation, Lusitanian Basin, Portugal: an outcrop analogue for the Statfjord
dc.relation.referencesenGroup, Norwegian North Sea. Geological Society, London, Special Publications, 387(1), 27–56.
dc.relation.referencesenKelleher, C., Scholz, C. A., Condon, L., & Reardon, M. (2018). Drones in geoscience research: the sky is the only
dc.relation.referencesenlimit. Eos, 99.
dc.relation.referencesenLapponi, F., Casini, G., Sharp, I., Blendinger, W., Fernández, N., Romaire, I., & Hunt, D. (2011). From outcrop to 3D
dc.relation.referencesenmodelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. Petroleum
dc.relation.referencesenGeoscience, 17(3), 283–307.
dc.relation.referencesenLebel, D., & Da Roza, R. (1999). An innovative approach using digital photogrammetry to map geology in the Porcupine
dc.relation.referencesenHills, Southern Alberta, Canada. Photogrammetric engineering and remote sensing, 65, 281–288.
dc.relation.referencesenMarques Jr, A., Horota, R. K., de Souza, E. M., Lupssinskü, L., Rossa, P., Aires, A. S., ... & Cazarin, C. L. (2020).
dc.relation.referencesenVirtual and digital outcrops in the petroleum industry: A systematic review. Earth-Science Reviews, 103260.
dc.relation.referencesenMcCaffrey, K. J. W., Feely, M., Hennessy, R., & Thompson, J. (2008). Visualization of folding in marble outcrops,
dc.relation.referencesenConnemara, western Ireland: An application of virtual outcrop technology. Geosphere, 4(3), 588–599.
dc.relation.referencesenMicheletti, N., Chandler, J.H. and Lane, S. N., 2015. Structure from motion (SFM) photogrammetry. In: Clarke, L. E.
dc.relation.referencesenand Nield, J. M. (Eds.) Geomorphological Techniques (Online Edition). London: British Society for
dc.relation.referencesenGeomorphology. ISSN: 2047-0371, Chap. 2, Sec. 2.2.
dc.relation.referencesenNex, F. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives.
dc.relation.referencesenInternational archives of the photogrammetry, remote sensing and spatial information sciences, 38(1/C22).
dc.relation.referencesenNieminski, N. M., & Graham, S. A. (2017). Modeling stratigraphic architecture using small unmanned aerial vehicles
dc.relation.referencesenand photogrammetry: Examples from the Miocene East Coast Basin, New Zealand. Journal of Sedimentary
dc.relation.referencesenResearch, 87(2), 126–132.
dc.relation.referencesenRarity, F., Van Lanen, X. M. T., Hodgetts, D., Gawthorpe, R. L., Wilson, P., Fabuel-Perez, I., & Redfern, J. (2014).
dc.relation.referencesenLiDAR-based digital outcrops for sedimentological analysis: workflows and techniques. Geological Society, London,
dc.relation.referencesenSpecial Publications, 387(1), 153–183.
dc.relation.referencesenRemondino, F., Rizzi, A., Girardi, S., Petti, F. M., & Avanzini, M. (2010). 3D Ichnology – recovering digital 3D models
dc.relation.referencesenof dinosaur footprints. The Photogrammetric Record, 25(131), 266–282.
dc.relation.referencesenRittersbacher, A., Buckley, S. J., Howell, J. A., Hampson, G. J., & Vallet, J. (2014). Helicopter-based laser scanning: a
dc.relation.referencesenmethod for quantitative analysis of large-scale sedimentary architecture. Geological Society, London, Special
dc.relation.referencesenPublications, 387(1), 185–202.
dc.relation.referencesenRosnell, T., & Honkavaara, E. (2012). Point cloud generation from aerial image data acquired by a quadrocopter type
dc.relation.referencesenmicro unmanned aerial vehicle and a digital still camera. Sensors, 12(1), 453–480.
dc.relation.referencesenSaputra, A., Rahardianto, T., & Gomez, C. (2017, July). The application of structure from motion (SfM) to identify the
dc.relation.referencesengeological structure and outcrop studies. In AIP Conference Proceedings, Vol. 1857, No. 1, 030001. AIP Publishing
dc.relation.referencesenLLC.
dc.relation.referencesenTony-Cristian, D., & Iulian-Vasile, B. (2017). 3-D minerals. Auxiliary material for the Physical Geology classes. Analele
dc.relation.referencesenStiintifice de Universitatii AI Cuza din Iasi. Sect. 2, Geologie, 63(1/2), 25–35.
dc.relation.referencesenTrinks, I., Clegg, P., McCaffrey, K., Jones, R., Hobbs, R., Holdsworth, B., ... & Wilson, R. (2005). Mapping and
dc.relation.referencesenanalysing virtual outcrops. Visual Geosciences, 10(1), 13-19.
dc.relation.referencesenViana, C. D., Endlein, A., da Cruz Campanha, G. A., & Grohmann, C. H. (2016). Algorithms for extraction of structural
dc.relation.referencesenattitudes from 3D outcrop models. Computers & geosciences, 90, 112–122.
dc.relation.referencesenVollgger, S. A., & Cruden, A. R. (2016). Mapping folds and fractures in basement and cover rocks using UAV
dc.relation.referencesenphotogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. Journal of Structural Geology, 85, 168–187.
dc.relation.referencesenWestoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). Structure-fromMotion’photogrammetry:
dc.relation.referencesenA low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314.
dc.relation.referencesenWilkinson, M. W., Jones, R. R., Woods, C. E., Gilment, S. R., McCaffrey, K. J. W., Kokkalas, S., & Long, J. J. (2016). A
dc.relation.referencesencomparison of terrestrial laser scanning and structure-from-motion photogrammetry as methods for digital outcrop
dc.relation.referencesenacquisition. Geosphere, 12(6), 1865–1880.
dc.relation.referencesenHlotov, V., Tserklevych, A., Zbrutsky, O., Kolisnichenko, V., Prokhorchuk, O., Karnaushenko, R., & Galetsky, V.
dc.relation.referencesen(2014). Analysis and prospects of aerial photography from unmanned aerial vehicles.
dc.rights.holder© Західне геодезичне товариство, 2022
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectогляд попередніх досліджень
dc.subjectпошук
dc.subjectметодика
dc.subjectісторія
dc.subjectвіртуальне геологічне відслонення
dc.subjectназемне лазерне сканування
dc.subjectцифрова фотограмметрія
dc.subject3D модель
dc.subjectreview of previous research
dc.subjectsearch
dc.subjectmethodology
dc.subjecthistory
dc.subjectvirtual geological outcrop
dc.subjectterrestrial laser scanning
dc.subjectdigital photogrammetry
dc.subject3D-model
dc.subject.udc528.18
dc.subject.udc629.783
dc.titleАналіз літературних джерел за темою “Віртуальне геологічне відслонення”
dc.title.alternativeAnalize of literature sources on the topic “Virtual geological outcrop”
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022vI__43__Oliinyk_M-Analize_of_literature_sources_30-39.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022vI__43__Oliinyk_M-Analize_of_literature_sources_30-39__COVER.png
Size:
521.58 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: