Аналіз літературних джерел за темою “Віртуальне геологічне відслонення”
dc.citation.epage | 39 | |
dc.citation.journalTitle | Сучасні досягнення геодезичної науки та виробництва | |
dc.citation.spage | 30 | |
dc.citation.volume | І (43) | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National Universitycopyright= | |
dc.contributor.author | Олійник, М. | |
dc.contributor.author | Бубняк, І. | |
dc.contributor.author | Oliinyk, M. | |
dc.contributor.author | Bubniak, I. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-06-19T10:18:58Z | |
dc.date.available | 2023-06-19T10:18:58Z | |
dc.date.created | 2022-02-22 | |
dc.date.issued | 2022-02-22 | |
dc.description.abstract | Проаналізовано літературні джерела, що стосуються віртуального геологічного відслонення. Для цього використано наукометричні бази Web of Science, Scopus, ScienceDirect, а також реферативні журнали “Геологія”, “Геодезія” та український реферативний журнал “Джерело”. Розглянуто тенденції застосування фотограмметрії та лазерного сканування для геологічних завдань. | |
dc.description.abstract | The analysis of the literature sources concerning “virtual geological outcrop” is carried out. For this purpose, the scientometric databases Web of Science, Scopus, ScienceDirect were used, as well as the abstract journals RH “Geology”, RH “Geodezy” and the Ukrainian abstract journal “Dzherelo”. Trends in the use of photogrammetry and laser scanning for geological problems are analyzed. | |
dc.format.extent | 30-39 | |
dc.format.pages | 10 | |
dc.identifier.citation | Олійник М. Аналіз літературних джерел за темою “Віртуальне геологічне відслонення” / М. Олійник, І. Бубняк // Сучасні досягнення геодезичної науки та виробництва. — Львів : Видавництво Львівської політехніки, 2022. — Том І (43). — С. 30–39. | |
dc.identifier.citationen | Oliinyk M. Analize of literature sources on the topic “Virtual geological outcrop” / M. Oliinyk, I. Bubniak // Modern Achievements of Geodesic Science and Industry. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol I (43). — P. 30–39. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59259 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Сучасні досягнення геодезичної науки та виробництва, 2022 | |
dc.relation.ispartof | Modern Achievements of Geodesic Science and Industry, 2022 | |
dc.relation.references | Abellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., & Asensio, E. (2011). Rockfall monitoring by | |
dc.relation.references | Terrestrial Laser Scanning – case study of the basaltic | |
dc.relation.references | rock face at Castellfollit de la Roca (Catalonia, | |
dc.relation.references | Spain). Natural Hazards and Earth System Sciences, 11(3), 829–841. | |
dc.relation.references | Arrowsmith, J. R., & Zielke, O. (2009). Tectonic | |
dc.relation.references | geomorphology of the San Andreas Fault zone from | |
dc.relation.references | high resolution topography: An example from the | |
dc.relation.references | Cholame segment. Geomorphology, 113(1–2), 70–81. | |
dc.relation.references | Baltsavias, E. P. (1999). A comparison between | |
dc.relation.references | photogrammetry and laser scanning. ISPRS Journal | |
dc.relation.references | of photogrammetry and Remote Sensing, 54(2–3), 83–94. | |
dc.relation.references | Bellian, J. A., Kerans, C., & Jennette, D. C. (2005). | |
dc.relation.references | Digital outcrop models: applications of terrestrial | |
dc.relation.references | scanning lidar technology in stratigraphic modeling. | |
dc.relation.references | Journal of sedimentary research, 75(2), 166–176. | |
dc.relation.references | Blistan, P., Kovanič, Ľ., Zelizňaková, V., & Palková, J. | |
dc.relation.references | (2016). Using UAV photogrammetry to document | |
dc.relation.references | rock outcrops. Acta Montanistica Slovaca, 21(2). | |
dc.relation.references | Bourke, P. (2014). Automatic 3D reconstruction: An | |
dc.relation.references | exploration of the state of the art. GSTF Journal on | |
dc.relation.references | Computing (JoC), 2(3). | |
dc.relation.references | Brush, J. A. (2015). Evaluating methods of field-based 3D | |
dc.relation.references | visualization and their application to mapping | |
dc.relation.references | metamorphic terranes: An example from the Panamint | |
dc.relation.references | Mountains, California. The University of Texas at El Paso. | |
dc.relation.references | Bubniak, I. M., Bubniak, A. M., Gavrilenko, O. D., | |
dc.relation.references | Nikulishyn, V. I., & Golubinka, I. I. (2019, May). | |
dc.relation.references | Using laser scanning and digital photogrammetry for | |
dc.relation.references | creation of virtual geological outcrops: Case studies | |
dc.relation.references | from the west of Ukraine. In 18th International | |
dc.relation.references | Conference on Geoinformatics-Theoretical and Applied | |
dc.relation.references | Aspects (Vol. 2019, No. 1, 1–5). European Association | |
dc.relation.references | of Geoscientists & Engineers. | |
dc.relation.references | Bubniak, І. М., Bubniak, А. М., Shylo, Y. О., & | |
dc.relation.references | Shylo, О. М. (2019). Use of digital photographic | |
dc.relation.references | method for the creation of virtual geological outcrops, | |
dc.relation.references | case studies on the clastic dikes from Western | |
dc.relation.references | Ukraine. Journal of Donetsk Mining Institute, (1), 154–159. | |
dc.relation.references | Caravaca, G., Le Mouélic, S., Mangold, N., L’Haridon, J., | |
dc.relation.references | Le Deit, L., & Massé, M. (2020). 3D digital outcrop | |
dc.relation.references | model reconstruction of the Kimberley outcrop (Gale | |
dc.relation.references | crater, Mars) and its integration into Virtual Reality | |
dc.relation.references | for simulated geological analysis. Planetary and | |
dc.relation.references | Space Science, 182, 104808. | |
dc.relation.references | Calvo, R., & Ramos, E. (2015). Unlocking the correlation | |
dc.relation.references | in fluvial outcrops by using a DOM-derived virtual | |
dc.relation.references | datum: Method description and field tests in the | |
dc.relation.references | Huesca fluvial fan, Ebro Basin (Spain). | |
dc.relation.references | Geosphere, 11(5), 1507–1529. | |
dc.relation.references | Cawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W., | |
dc.relation.references | & Totake, Y. (2017). LiDAR, UAV or compassclinometer? Accuracy, coverage and the effects on | |
dc.relation.references | structural models. Journal of Structural Geology, 98, 67–82. | |
dc.relation.references | Corradetti, A., Tavani, S., Russo, M., Arbués, P. C., & | |
dc.relation.references | Granado, P. (2017). Quantitative analysis of folds by | |
dc.relation.references | means of orthorectified photogrammetric 3D models: | |
dc.relation.references | a case study from Mt. Catria, Northern Apennines, | |
dc.relation.references | Italy. The Photogrammetric Record, 32(160), 480–496. | |
dc.relation.references | Falkingham, P. L. (2012). Acquisition of high resolution | |
dc.relation.references | three-dimensional models using free, opensource, photogrammetric software. Palaeontologia | |
dc.relation.references | electronica, 15(1), 15. | |
dc.relation.references | García-Sellés, D., Granado, P., Muñoz, J. A., Gratacos, O., | |
dc.relation.references | Carrera, N., & Arbues, P. (2014). Capture and | |
dc.relation.references | Geological Data Extraction: Tools for a Better | |
dc.relation.references | Analysis and Digital Outcrop Modelling. In Vertical | |
dc.relation.references | Geol. Conf., Switzerland, 5–7 February. | |
dc.relation.references | Guerin, A., Nguyen, L., Abellán, A., Carrea, D., | |
dc.relation.references | Derron, M. H., & Jaboyedoff, M. (2015). Common | |
dc.relation.references | problems encountered in 3D mapping of geological | |
dc.relation.references | contacts using high-resolution terrain and image data. | |
dc.relation.references | European Journal of Remote Sensing, 48(1), 661–672. | |
dc.relation.references | Humair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J. L., | |
dc.relation.references | & Jaboyedoff, M. (2015). Geological layers | |
dc.relation.references | detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss | |
dc.relation.references | Jura Mountains. European Journal of Remote | |
dc.relation.references | Sensing, 48(1), 541–568. | |
dc.relation.references | James, M. R., & Robson, S. (2012). Straightforward | |
dc.relation.references | reconstruction of 3D surfaces and topography with a | |
dc.relation.references | camera: Accuracy and geoscience application. Journal | |
dc.relation.references | of Geophysical Research: Earth Surface, 117(F3). | |
dc.relation.references | Jones, R. R., Mccaffrey, K. J., Imber, J., Wightman, R., | |
dc.relation.references | Smith, S. A., Holdsworth, R. E., ... & Wilson, R. W. | |
dc.relation.references | (2008). Calibration and validation of reservoir | |
dc.relation.references | models: the importance of high resolution, quantitative | |
dc.relation.references | outcrop analogues. Geological Society, London, | |
dc.relation.references | Special Publications, 309(1), 87–98. | |
dc.relation.references | Jordan, B. R. (2015). A bird’s-eye view of geology: The | |
dc.relation.references | use of micro drones/UAVs in geologic fieldwork and | |
dc.relation.references | education. GSA today, 25(7), 50–52 | |
dc.relation.references | Keogh, K. J., Leary, S., Martinius, A. W., Scott, A. S., | |
dc.relation.references | Riordan, S., Viste, I., ... & Howell, J. (2014). Data | |
dc.relation.references | capture for multiscale modelling of the Lourinha | |
dc.relation.references | Formation, Lusitanian Basin, Portugal: an outcrop | |
dc.relation.references | analogue for the Statfjord Group, Norwegian | |
dc.relation.references | North Sea. Geological Society, London, Special | |
dc.relation.references | Publications, 387(1), 27–56. | |
dc.relation.references | Kelleher, C., Scholz, C. A., Condon, L., & Reardon, M. | |
dc.relation.references | (2018). Drones in geoscience research: the sky is the | |
dc.relation.references | only limit. Eos, 99. | |
dc.relation.references | Lapponi, F., Casini, G., Sharp, I., Blendinger, W., | |
dc.relation.references | Fernández, N., Romaire, I., & Hunt, D. (2011). From | |
dc.relation.references | outcrop to 3D modelling: a case study of a | |
dc.relation.references | dolomitized carbonate reservoir, Zagros Mountains, | |
dc.relation.references | Iran. Petroleum Geoscience, 17(3), 283–307. | |
dc.relation.references | Lebel, D., & Da Roza, R. (1999). An innovative approach | |
dc.relation.references | using digital photogrammetry to map geology in | |
dc.relation.references | the Porcupine Hills, Southern Alberta, Canada. | |
dc.relation.references | Photogrammetric engineering and remote sensing,65, 281–288. | |
dc.relation.references | Marques Jr, A., Horota, R. K., de Souza, E. M., | |
dc.relation.references | Lupssinskü, L., Rossa, P., Aires, A. S., ... & | |
dc.relation.references | Cazarin, C. L. (2020). Virtual and digital outcrops in | |
dc.relation.references | the petroleum industry: A systematic review. EarthScience Reviews, 103260. | |
dc.relation.references | McCaffrey, K. J. W., Feely, M., Hennessy, R., & | |
dc.relation.references | Thompson, J. (2008). Visualization of folding in | |
dc.relation.references | marble outcrops, Connemara, western Ireland: An | |
dc.relation.references | application of virtual outcrop technology. | |
dc.relation.references | Geosphere, 4(3), 588–599. | |
dc.relation.references | Micheletti, N., Chandler, J.H. and Lane, S. N., 2015. | |
dc.relation.references | Structure from motion (SFM) photogrammetry. In: | |
dc.relation.references | Clarke, L. E. and Nield, J. M. (Eds.) Geomorphological | |
dc.relation.references | Techniques (Online Edition). London: British | |
dc.relation.references | Society for Geomorphology. ISSN: 2047-0371, | |
dc.relation.references | Chap. 2, Sec. 2.2. | |
dc.relation.references | Nex, F. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. | |
dc.relation.references | International archives of the photogrammetry, | |
dc.relation.references | remote sensing and spatial information sciences, 38(1/C22). | |
dc.relation.references | Nieminski, N. M., & Graham, S. A. (2017). Modeling | |
dc.relation.references | stratigraphic architecture using small unmanned | |
dc.relation.references | aerial vehicles and photogrammetry: Examples from | |
dc.relation.references | the Miocene East Coast Basin, New Zealand. | |
dc.relation.references | Journal of Sedimentary Research, 87(2), 126–132. | |
dc.relation.references | Rarity, F., Van Lanen, X. M. T., Hodgetts, D., | |
dc.relation.references | Gawthorpe, R. L., Wilson, P., Fabuel-Perez, I., & | |
dc.relation.references | Redfern, J. (2014). LiDAR-based digital outcrops for | |
dc.relation.references | sedimentological analysis: workflows and techniques. | |
dc.relation.references | Geological Society, London, Special Publications, 387(1), 153–183. | |
dc.relation.references | Remondino, F., Rizzi, A., Girardi, S., Petti, F. M., & | |
dc.relation.references | Avanzini, M. (2010). 3D Ichnology – recovering | |
dc.relation.references | digital 3D models of dinosaur footprints. The | |
dc.relation.references | Photogrammetric Record, 25(131), 266–282. | |
dc.relation.references | Rittersbacher, A., Buckley, S. J., Howell, J. A., | |
dc.relation.references | Hampson, G. J., & Vallet, J. (2014). Helicopterbased laser scanning: a method for quantitative analysis | |
dc.relation.references | of large-scale sedimentary architecture. Geological | |
dc.relation.references | Society, London, Special Publications, 387(1), 185–202. | |
dc.relation.references | Rosnell, T., & Honkavaara, E. (2012). Point cloud | |
dc.relation.references | generation from aerial image data acquired by a | |
dc.relation.references | quadrocopter type micro unmanned aerial vehicle | |
dc.relation.references | and a digital still camera. Sensors, 12(1), 453–480. | |
dc.relation.references | Saputra, A., Rahardianto, T., & Gomez, C. (2017, July). | |
dc.relation.references | The application of structure from motion (SfM) to | |
dc.relation.references | identify the geological structure and outcrop studies. | |
dc.relation.references | In AIP Conference Proceedings, Vol. 1857, No. 1, 030001. AIP Publishing LLC. | |
dc.relation.references | Tony-Cristian, D., & Iulian-Vasile, B. (2017). 3-D minerals. | |
dc.relation.references | Auxiliary material for the Physical Geology classes. | |
dc.relation.references | Analele Stiintifice de Universitatii AI Cuza din Iasi. | |
dc.relation.references | Sect. 2, Geologie, 63(1/2), 25–35. | |
dc.relation.references | Trinks, I., Clegg, P., McCaffrey, K., Jones, R., Hobbs, R., | |
dc.relation.references | Holdsworth, B., ... & Wilson, R. (2005). Mapping and | |
dc.relation.references | analysing virtual outcrops. Visual Geosciences, 10(1), 13–19. | |
dc.relation.references | Viana, C. D., Endlein, A., da Cruz Campanha, G. A., & | |
dc.relation.references | Grohmann, C. H. (2016). Algorithms for extraction | |
dc.relation.references | of structural attitudes from 3D outcrop models. | |
dc.relation.references | Computers & geosciences, 90, 112–122. | |
dc.relation.references | Vollgger, S. A., & Cruden, A. R. (2016). Mapping folds | |
dc.relation.references | and fractures in basement and cover rocks using | |
dc.relation.references | UAV photogrammetry, Cape Liptrap and Cape | |
dc.relation.references | Paterson, Victoria, Australia. Journal of Structural | |
dc.relation.references | Geology, 85, 168–187. | |
dc.relation.references | Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., | |
dc.relation.references | & Reynolds, J. M. (2012). Structure-fromMotion’photogrammetry: A low-cost, effective tool | |
dc.relation.references | for geoscience applications. Geomorphology, 179, 300–314. | |
dc.relation.references | Wilkinson, M. W., Jones, R. R., Woods, C. E., Gilment, S. R., | |
dc.relation.references | McCaffrey, K. J. W., Kokkalas, S., & Long, J. J. | |
dc.relation.references | (2016). A comparison of terrestrial laser scanning | |
dc.relation.references | and structure-from-motion photogrammetry as methods | |
dc.relation.references | for digital outcrop acquisition. Geosphere, 12(6), 1865–1880. | |
dc.relation.references | Глотов, В., Церклевич, А., Збруцький, О., Колісніченко, В., Прохорчук, О., Карнаушенко, Р., & | |
dc.relation.references | Галецький, В. (2014). Аналіз і перспективи аерознімання з безпілотного літального апарата. | |
dc.relation.references | Сучасні досягнення геодезичної науки та виробництва, 1(27). | |
dc.relation.referencesen | Abellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., & Asensio, E. (2011). Rockfall monitoring by Terrestrial | |
dc.relation.referencesen | Laser Scanning – case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Natural Hazards | |
dc.relation.referencesen | and Earth System Sciences, 11(3), 829–841. | |
dc.relation.referencesen | Arrowsmith, J. R., & Zielke, O. (2009). Tectonic geomorphology of the San Andreas Fault zone from high resolution | |
dc.relation.referencesen | topography: An example from the Cholame segment. Geomorphology, 113(1–2), 70–81. | |
dc.relation.referencesen | Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of photogrammetry | |
dc.relation.referencesen | and Remote Sensing, 54(2–3), 83–94. | |
dc.relation.referencesen | Bellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital outcrop models: applications of terrestrial scanning lidar | |
dc.relation.referencesen | technology in stratigraphic modeling. Journal of sedimentary research, 75(2), 166–176. | |
dc.relation.referencesen | Blistan, P., Kovanič, Ľ., Zelizňaková, V., & Palková, J. (2016). Using UAV photogrammetry to document rock outcrops. | |
dc.relation.referencesen | Acta Montanistica Slovaca, 21(2). | |
dc.relation.referencesen | Bourke, P. (2014). Automatic 3D reconstruction: An exploration of the state of the art. GSTF Journal on Computing | |
dc.relation.referencesen | (JoC), 2(3). | |
dc.relation.referencesen | Brush, J. A. (2015). Evaluating methods of field-based 3D visualization and their application to mapping metamorphic | |
dc.relation.referencesen | terranes: An example from the Panamint Mountains, California. The University of Texas at El Paso. | |
dc.relation.referencesen | Bubniak, I. M., Bubniak, A. M., Gavrilenko, O. D., Nikulishyn, V. I., & Golubinka, I. I. (2019, May). Using laser | |
dc.relation.referencesen | scanning and digital photogrammetry for creation of virtual geological outcrops: Case studies from the west of | |
dc.relation.referencesen | Ukraine. In 18th International Conference on Geoinformatics-Theoretical and Applied Aspects (Vol. 2019, No. 1, 1–5). | |
dc.relation.referencesen | European Association of Geoscientists & Engineers. | |
dc.relation.referencesen | Bubniak, І. М., Bubniak, А. М., Shylo, Y. О., & Shylo, О. М. (2019). Use of digital photographic method for the | |
dc.relation.referencesen | creation of virtual geological outcrops, case studies on the clastic dikes from Western Ukraine. Journal of Donetsk | |
dc.relation.referencesen | Mining Institute, (1), 154–159. | |
dc.relation.referencesen | Caravaca, G., Le Mouélic, S., Mangold, N., L’Haridon, J., Le Deit, L., & Massé, M. (2020). 3D digital outcrop model | |
dc.relation.referencesen | reconstruction of the Kimberley outcrop (Gale crater, Mars) and its integration into Virtual Reality for simulated | |
dc.relation.referencesen | geological analysis. Planetary and Space Science, 182, 104808. | |
dc.relation.referencesen | Calvo, R., & Ramos, E. (2015). Unlocking the correlation in fluvial outcrops by using a DOM-derived virtual datum: | |
dc.relation.referencesen | Method description and field tests in the Huesca fluvial fan, Ebro Basin (Spain). Geosphere, 11(5), 1507–1529. | |
dc.relation.referencesen | Cawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W., & Totake, Y. (2017). LiDAR, UAV or compass-clinometer? | |
dc.relation.referencesen | Accuracy, coverage and the effects on structural models. Journal of Structural Geology, 98, 67–82. | |
dc.relation.referencesen | Corradetti, A., Tavani, S., Russo, M., Arbués, P. C., & Granado, P. (2017). Quantitative analysis of folds by means of | |
dc.relation.referencesen | orthorectified photogrammetric 3D models: a case study from Mt. Catria, Northern Apennines, Italy. The | |
dc.relation.referencesen | Photogrammetric Record, 32(160), 480–496. | |
dc.relation.referencesen | Falkingham, P. L. (2012). Acquisition of high resolution three-dimensional models using free, open-source, | |
dc.relation.referencesen | photogrammetric software. Palaeontologia electronica, 15(1), 15. | |
dc.relation.referencesen | García-Sellés, D., Granado, P., Muñoz, J. A., Gratacos, O., Carrera, N., & Arbues, P. (2014). Capture and Geological | |
dc.relation.referencesen | Data Extraction: Tools for a Better Analysis and Digital Outcrop Modelling. In Vertical Geol. Conf., | |
dc.relation.referencesen | Switzerland, 5–7 February. | |
dc.relation.referencesen | Guerin, A., Nguyen, L., Abellán, A., Carrea, D., Derron, M. H., & Jaboyedoff, M. (2015). Common problems | |
dc.relation.referencesen | encountered in 3D mapping of geological contacts using high-resolution terrain and image data. European Journal of | |
dc.relation.referencesen | Remote Sensing, 48(1), 661–672. | |
dc.relation.referencesen | Humair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J. L., & Jaboyedoff, M. (2015). Geological layers detection and | |
dc.relation.referencesen | characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains. European | |
dc.relation.referencesen | Journal of Remote Sensing, 48(1), 541–568. | |
dc.relation.referencesen | James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: | |
dc.relation.referencesen | Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3). | |
dc.relation.referencesen | Jones, R. R., Mccaffrey, K. J., Imber, J., Wightman, R., Smith, S. A., Holdsworth, R. E., ... & Wilson, R. W. (2008). | |
dc.relation.referencesen | Calibration and validation of reservoir models: the importance of high resolution, quantitative outcrop | |
dc.relation.referencesen | analogues. Geological Society, London, Special Publications, 309(1), 87–98. | |
dc.relation.referencesen | Jordan, B. R. (2015). A bird’s-eye view of geology: The use of micro drones/UAVs in geologic fieldwork and | |
dc.relation.referencesen | education. GSA today, 25(7), 50–52 | |
dc.relation.referencesen | Keogh, K. J., Leary, S., Martinius, A. W., Scott, A. S., Riordan, S., Viste, I., ... & Howell, J. (2014). Data capture for | |
dc.relation.referencesen | multiscale modelling of the Lourinha Formation, Lusitanian Basin, Portugal: an outcrop analogue for the Statfjord | |
dc.relation.referencesen | Group, Norwegian North Sea. Geological Society, London, Special Publications, 387(1), 27–56. | |
dc.relation.referencesen | Kelleher, C., Scholz, C. A., Condon, L., & Reardon, M. (2018). Drones in geoscience research: the sky is the only | |
dc.relation.referencesen | limit. Eos, 99. | |
dc.relation.referencesen | Lapponi, F., Casini, G., Sharp, I., Blendinger, W., Fernández, N., Romaire, I., & Hunt, D. (2011). From outcrop to 3D | |
dc.relation.referencesen | modelling: a case study of a dolomitized carbonate reservoir, Zagros Mountains, Iran. Petroleum | |
dc.relation.referencesen | Geoscience, 17(3), 283–307. | |
dc.relation.referencesen | Lebel, D., & Da Roza, R. (1999). An innovative approach using digital photogrammetry to map geology in the Porcupine | |
dc.relation.referencesen | Hills, Southern Alberta, Canada. Photogrammetric engineering and remote sensing, 65, 281–288. | |
dc.relation.referencesen | Marques Jr, A., Horota, R. K., de Souza, E. M., Lupssinskü, L., Rossa, P., Aires, A. S., ... & Cazarin, C. L. (2020). | |
dc.relation.referencesen | Virtual and digital outcrops in the petroleum industry: A systematic review. Earth-Science Reviews, 103260. | |
dc.relation.referencesen | McCaffrey, K. J. W., Feely, M., Hennessy, R., & Thompson, J. (2008). Visualization of folding in marble outcrops, | |
dc.relation.referencesen | Connemara, western Ireland: An application of virtual outcrop technology. Geosphere, 4(3), 588–599. | |
dc.relation.referencesen | Micheletti, N., Chandler, J.H. and Lane, S. N., 2015. Structure from motion (SFM) photogrammetry. In: Clarke, L. E. | |
dc.relation.referencesen | and Nield, J. M. (Eds.) Geomorphological Techniques (Online Edition). London: British Society for | |
dc.relation.referencesen | Geomorphology. ISSN: 2047-0371, Chap. 2, Sec. 2.2. | |
dc.relation.referencesen | Nex, F. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. | |
dc.relation.referencesen | International archives of the photogrammetry, remote sensing and spatial information sciences, 38(1/C22). | |
dc.relation.referencesen | Nieminski, N. M., & Graham, S. A. (2017). Modeling stratigraphic architecture using small unmanned aerial vehicles | |
dc.relation.referencesen | and photogrammetry: Examples from the Miocene East Coast Basin, New Zealand. Journal of Sedimentary | |
dc.relation.referencesen | Research, 87(2), 126–132. | |
dc.relation.referencesen | Rarity, F., Van Lanen, X. M. T., Hodgetts, D., Gawthorpe, R. L., Wilson, P., Fabuel-Perez, I., & Redfern, J. (2014). | |
dc.relation.referencesen | LiDAR-based digital outcrops for sedimentological analysis: workflows and techniques. Geological Society, London, | |
dc.relation.referencesen | Special Publications, 387(1), 153–183. | |
dc.relation.referencesen | Remondino, F., Rizzi, A., Girardi, S., Petti, F. M., & Avanzini, M. (2010). 3D Ichnology – recovering digital 3D models | |
dc.relation.referencesen | of dinosaur footprints. The Photogrammetric Record, 25(131), 266–282. | |
dc.relation.referencesen | Rittersbacher, A., Buckley, S. J., Howell, J. A., Hampson, G. J., & Vallet, J. (2014). Helicopter-based laser scanning: a | |
dc.relation.referencesen | method for quantitative analysis of large-scale sedimentary architecture. Geological Society, London, Special | |
dc.relation.referencesen | Publications, 387(1), 185–202. | |
dc.relation.referencesen | Rosnell, T., & Honkavaara, E. (2012). Point cloud generation from aerial image data acquired by a quadrocopter type | |
dc.relation.referencesen | micro unmanned aerial vehicle and a digital still camera. Sensors, 12(1), 453–480. | |
dc.relation.referencesen | Saputra, A., Rahardianto, T., & Gomez, C. (2017, July). The application of structure from motion (SfM) to identify the | |
dc.relation.referencesen | geological structure and outcrop studies. In AIP Conference Proceedings, Vol. 1857, No. 1, 030001. AIP Publishing | |
dc.relation.referencesen | LLC. | |
dc.relation.referencesen | Tony-Cristian, D., & Iulian-Vasile, B. (2017). 3-D minerals. Auxiliary material for the Physical Geology classes. Analele | |
dc.relation.referencesen | Stiintifice de Universitatii AI Cuza din Iasi. Sect. 2, Geologie, 63(1/2), 25–35. | |
dc.relation.referencesen | Trinks, I., Clegg, P., McCaffrey, K., Jones, R., Hobbs, R., Holdsworth, B., ... & Wilson, R. (2005). Mapping and | |
dc.relation.referencesen | analysing virtual outcrops. Visual Geosciences, 10(1), 13-19. | |
dc.relation.referencesen | Viana, C. D., Endlein, A., da Cruz Campanha, G. A., & Grohmann, C. H. (2016). Algorithms for extraction of structural | |
dc.relation.referencesen | attitudes from 3D outcrop models. Computers & geosciences, 90, 112–122. | |
dc.relation.referencesen | Vollgger, S. A., & Cruden, A. R. (2016). Mapping folds and fractures in basement and cover rocks using UAV | |
dc.relation.referencesen | photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. Journal of Structural Geology, 85, 168–187. | |
dc.relation.referencesen | Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). Structure-fromMotion’photogrammetry: | |
dc.relation.referencesen | A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. | |
dc.relation.referencesen | Wilkinson, M. W., Jones, R. R., Woods, C. E., Gilment, S. R., McCaffrey, K. J. W., Kokkalas, S., & Long, J. J. (2016). A | |
dc.relation.referencesen | comparison of terrestrial laser scanning and structure-from-motion photogrammetry as methods for digital outcrop | |
dc.relation.referencesen | acquisition. Geosphere, 12(6), 1865–1880. | |
dc.relation.referencesen | Hlotov, V., Tserklevych, A., Zbrutsky, O., Kolisnichenko, V., Prokhorchuk, O., Karnaushenko, R., & Galetsky, V. | |
dc.relation.referencesen | (2014). Analysis and prospects of aerial photography from unmanned aerial vehicles. | |
dc.rights.holder | © Західне геодезичне товариство, 2022 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | огляд попередніх досліджень | |
dc.subject | пошук | |
dc.subject | методика | |
dc.subject | історія | |
dc.subject | віртуальне геологічне відслонення | |
dc.subject | наземне лазерне сканування | |
dc.subject | цифрова фотограмметрія | |
dc.subject | 3D модель | |
dc.subject | review of previous research | |
dc.subject | search | |
dc.subject | methodology | |
dc.subject | history | |
dc.subject | virtual geological outcrop | |
dc.subject | terrestrial laser scanning | |
dc.subject | digital photogrammetry | |
dc.subject | 3D-model | |
dc.subject.udc | 528.18 | |
dc.subject.udc | 629.783 | |
dc.title | Аналіз літературних джерел за темою “Віртуальне геологічне відслонення” | |
dc.title.alternative | Analize of literature sources on the topic “Virtual geological outcrop” | |
dc.type | Article |
Files
License bundle
1 - 1 of 1