Stability analysis and Hopf bifurcation of a delayed prey–predator model with Hattaf–Yousfi functional response and Allee effect
dc.citation.epage | 673 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 668 | |
dc.contributor.affiliation | Університет Хасана ІІ Касабланки | |
dc.contributor.affiliation | Hassan II University of Casablanca | |
dc.contributor.author | Бузіан, С. | |
dc.contributor.author | Лотфі, Е. М. | |
dc.contributor.author | Хаттаф, К. | |
dc.contributor.author | Юсфі, Н. | |
dc.contributor.author | Bouziane, S. | |
dc.contributor.author | Lotfi, E. M. | |
dc.contributor.author | Hattaf, K. | |
dc.contributor.author | Yousfi, N. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T12:17:36Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Ефект Аллі є важливим явищем у контексті екології, що характеризується кореляцією між щільністю популяції та середньою індивідуальною пристосованістю популяції. У цій роботі досліджується вплив ефекту Аллі на динаміку сповільненої моделі “жертва–хижак” з функціональним відгуком Хаттафа–Юсфі. Спочатку доведено, що запропонована модель з ефектом Аллі є математично та екологічно коректною. Крім того, досліджено стійкість рівноваги та обговорено локальне існування біфуркації Хопфа. | |
dc.description.abstract | The Allee effect is an important phenomena in the context of ecology characterized by a correlation between population density and the mean individual fitness of a population. In this work, we examine the influences of Allee effect on the dynamics of a delayed prey–predator model with Hattaf–Yousfi functional response. We first prove that the proposed model with Allee effect is mathematically and ecologically well-posed. Moreover, we study the stability of equilibriums and discuss the local existence of Hopf bifurcation. | |
dc.format.extent | 668-673 | |
dc.format.pages | 6 | |
dc.identifier.citation | Stability analysis and Hopf bifurcation of a delayed prey–predator model with Hattaf–Yousfi functional response and Allee effect / S. Bouziane, E. M. Lotfi, K. Hattaf, N. Yousfi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 668–673. | |
dc.identifier.citationen | Stability analysis and Hopf bifurcation of a delayed prey–predator model with Hattaf–Yousfi functional response and Allee effect / S. Bouziane, E. M. Lotfi, K. Hattaf, N. Yousfi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 668–673. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.03.668 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63539 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 3 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (10), 2023 | |
dc.relation.references | [1] Lotka A. J. Elements of physical biology. Williams and Wilkins (1925). | |
dc.relation.references | [2] Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature. 118, 558–560 (1926). | |
dc.relation.references | [3] Bouziane S., Lotfi E., Hattaf K., Yousfi N. Dynamics of a delayed prey–predator model with Hattaf–Yousfi functional response. Communications in Mathematical Biology and Neuroscience. 2022, 104 (2022). | |
dc.relation.references | [4] Louartassi Y., Alla A., Hattaf K., Nabil A. Dynamics of a predator–prey model with harvesting and reserve area for prey in the presence of competition and toxicity. Journal of Applied Mathematics and Computing. 59, 305–321 (2019). | |
dc.relation.references | [5] Allee W. C. Animal aggregations: A study in general sociology. Chicago, The University of Chicago Press (1931). | |
dc.relation.references | [6] Pal P. J., Saha T., Sen M., Banerjee M. A delayed predator–prey model with strong Allee effect in prey population growth. Nonlinear Dynamics. 68, 23–42 (2012). | |
dc.relation.references | [7] Ye Y., Liu H., Wei Y., Zhang K., Ma M., Ye J. Dynamic study of a predator-prey model with Allee effect and Holling type-I functional response. Advances in Difference Equations. 2019, 369 (2019). | |
dc.relation.references | [8] Holling C. S. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. The Canadian Entomologist. 91 (5), 293–320 (1959). | |
dc.relation.references | [9] Garain K., Mandal P. S. Bubbling and hydra effect in a population system with Allee effect. Ecological Complexity. 47, 100939 (2021). | |
dc.relation.references | [10] Hattaf K., Yousfi N. A class of delayed viral infection models with general incidence rate and adaptive immune response. International Journal of Dynamics and Control. 4, 254–265 (2016). | |
dc.relation.references | [11] Hattaf K. A new generalized definition of fractional derivative with non-singular kernel. Computation. 8 (2), 49 (2020). | |
dc.relation.references | [12] Hattaf K. On the stability and numerical scheme of fractional differential equations with application to biology. Computation. 10 (6), 97 (2022). | |
dc.relation.references | [13] Berec L., Angulo E., Courchamp F. Multiple Allee effects and population management. Trends in Ecology and Evolution. 22 (4), 185–191 (2007). | |
dc.relation.references | [14] Angulo E., Roemer G. W., Berec L., Gascoigne J., Courchamp F. Double Allee effects and extinction in the island fox. Conservation Biology. 21 (4), 1082–1091 (2007). | |
dc.relation.referencesen | [1] Lotka A. J. Elements of physical biology. Williams and Wilkins (1925). | |
dc.relation.referencesen | [2] Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature. 118, 558–560 (1926). | |
dc.relation.referencesen | [3] Bouziane S., Lotfi E., Hattaf K., Yousfi N. Dynamics of a delayed prey–predator model with Hattaf–Yousfi functional response. Communications in Mathematical Biology and Neuroscience. 2022, 104 (2022). | |
dc.relation.referencesen | [4] Louartassi Y., Alla A., Hattaf K., Nabil A. Dynamics of a predator–prey model with harvesting and reserve area for prey in the presence of competition and toxicity. Journal of Applied Mathematics and Computing. 59, 305–321 (2019). | |
dc.relation.referencesen | [5] Allee W. C. Animal aggregations: A study in general sociology. Chicago, The University of Chicago Press (1931). | |
dc.relation.referencesen | [6] Pal P. J., Saha T., Sen M., Banerjee M. A delayed predator–prey model with strong Allee effect in prey population growth. Nonlinear Dynamics. 68, 23–42 (2012). | |
dc.relation.referencesen | [7] Ye Y., Liu H., Wei Y., Zhang K., Ma M., Ye J. Dynamic study of a predator-prey model with Allee effect and Holling type-I functional response. Advances in Difference Equations. 2019, 369 (2019). | |
dc.relation.referencesen | [8] Holling C. S. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. The Canadian Entomologist. 91 (5), 293–320 (1959). | |
dc.relation.referencesen | [9] Garain K., Mandal P. S. Bubbling and hydra effect in a population system with Allee effect. Ecological Complexity. 47, 100939 (2021). | |
dc.relation.referencesen | [10] Hattaf K., Yousfi N. A class of delayed viral infection models with general incidence rate and adaptive immune response. International Journal of Dynamics and Control. 4, 254–265 (2016). | |
dc.relation.referencesen | [11] Hattaf K. A new generalized definition of fractional derivative with non-singular kernel. Computation. 8 (2), 49 (2020). | |
dc.relation.referencesen | [12] Hattaf K. On the stability and numerical scheme of fractional differential equations with application to biology. Computation. 10 (6), 97 (2022). | |
dc.relation.referencesen | [13] Berec L., Angulo E., Courchamp F. Multiple Allee effects and population management. Trends in Ecology and Evolution. 22 (4), 185–191 (2007). | |
dc.relation.referencesen | [14] Angulo E., Roemer G. W., Berec L., Gascoigne J., Courchamp F. Double Allee effects and extinction in the island fox. Conservation Biology. 21 (4), 1082–1091 (2007). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | екологія | |
dc.subject | ефект Аллі | |
dc.subject | функціональний відгук Хаттаф–Юсфі | |
dc.subject | стійкість | |
dc.subject | біфуркація Хопфа | |
dc.subject | ecology | |
dc.subject | Allee effect | |
dc.subject | Hattaf–Yousfi functional response | |
dc.subject | stability | |
dc.subject | Hopf bifurcation | |
dc.title | Stability analysis and Hopf bifurcation of a delayed prey–predator model with Hattaf–Yousfi functional response and Allee effect | |
dc.title.alternative | Аналіз стійкості та біфуркація Хопфа сповільненої моделі “жертва–хижак” з функціональним відгуком Хаттафа–Юсфі та ефектом Аллі | |
dc.type | Article |
Files
License bundle
1 - 1 of 1