Discrete solution for the nonlinear parabolic equations with diffusion terms in Museilak–spaces

dc.citation.epage600
dc.citation.issue4
dc.citation.spage584
dc.contributor.affiliationУніверситет Сіді Мохаммеда Бен Абделли
dc.contributor.affiliationSidi Mohammed Ben Abdellah University
dc.contributor.authorАберкі, А.
dc.contributor.authorЕльмасуді, М.
dc.contributor.authorХаммумі, М.
dc.contributor.authorAberqi, A.
dc.contributor.authorElmassoudi, M.
dc.contributor.authorHammoumi, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-11-01T07:49:35Z
dc.date.available2023-11-01T07:49:35Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractУ цій статті досліджується клас нелінійних еволюційних рівнянь зі загасанням, що виникають у гідродинаміці та реології. Нелінійний член монотонний і має опуклий потенціал, але нестандартно зростає. Відповідним функціональним каркасом для таких рівнянь є модульні простори Музейлака. Доведено існування та єдиність слабкого розв’язку, використовуючи наближений підхід та комбінуючи внутрішнє наближення зі зворотною схемою Ейлера, а також дано апріорну оцінку похибки часової напівдискретизації.
dc.description.abstractIn this paper, a class of nonlinear evolution equations with damping arising in fluid dynamics and rheology is studied. The nonlinear term is monotone and possesses a convex potential but exhibits non-standard growth. The appropriate functional framework for such equations is the modularly Museilak-spaces. The existence and uniqueness of a weak solution are proved using an approximation approach by combining an internal approximation with the backward Euler scheme, also a priori error estimate for the temporal semi-discretization is given.
dc.format.extent584-600
dc.format.pages17
dc.identifier.citationAberqi A. Discrete solution for the nonlinear parabolic equations with diffusion terms in Museilak–spaces / A. Aberqi, M. Elmassoudi, M. Hammoumi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 584–600.
dc.identifier.citationenAberqi A. Discrete solution for the nonlinear parabolic equations with diffusion terms in Museilak–spaces / A. Aberqi, M. Elmassoudi, M. Hammoumi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 584–600.
dc.identifier.doi10.23939/mmc2021.04.584
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60443
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 4 (8), 2021
dc.relation.references[1] Gwiazda P., Swierczewska-Gwiazda A., Wr´oblewska A. Monotonicity methods in generalized Orlicz spaces ˙ for a class of non-Newtonian fluids. Math. Methods Appl. Sci. 33 (2), 125–137 (2010).
dc.relation.references[2] Musielak J. Modular spaces and Orlicz spaces. Lecture Notes in Math. (1983).
dc.relation.references[3] Del Vecchio T., Posteraro M. R. Existence and regularity results for nonlinear elliptic equations with measure data. Adv. Differential Equations. 1 (5), 899–917 (1996).
dc.relation.references[4] Di Nardo R., Feo F., Guib´e O. Existence result for nonlinear parabolic equations with lower order terms. Analysis and Applications. 9 (2), 161–186 (2011).
dc.relation.references[5] Blanchard D., Murat F., Redwane H. Existence and uniqueness of a renormalized solution for fairly general class of non linear parabolic problems. Journal of Differential Equations. 177 (2), 331–374 (2001).
dc.relation.references[6] Aberqi A., Bennouna J., Mekkour M., Redwane H. Renormalized solution for a nonlinear parabolic equation with lower order terms. The Australian Journal of Mathematical Analysis and Applications. 10 (1), 1–15 (2013).
dc.relation.references[7] Aberqi A., Bennouna J., Mekkour M., Redwane H. Nonlinear parabolic inequality with lower order terms. Applicable Analysis. 96 (12), 2102–2117 (2017).
dc.relation.references[8] Aharouch L., Bennouna J. Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Analysis: Theory, Methods & Applications. 72 (9–10), 3553–3565 (2010).
dc.relation.references[9] Aberqi A., Bennouna J., Elmassoudi M., Hammoumi M. Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces. Monatshefte f¨ur Mathematik. 189, 195–219 (2019).
dc.relation.references[10] Mukminov F. Kh. Uniqueness of the renormalized solutions to the cauchy problem for an anistropic parabolic equation. Ufa Mathematical Journal. 8 (2), 44–57 (2016).
dc.relation.references[11] Mukminov F. Kh. Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces. Sbornik: Mathematics. 208 (8), 1187–1206 (2017).
dc.relation.references[12] Emmrich E., Wroblewska-Kaminska A. Convergence of a full discretization of quasi-linear parabolic equations in isotropic and anisotropic Orlicz spaces. SIAM Journal on Numerical Analysis. 51 (2), 1163–1184 (2013).
dc.relation.references[13] Ruf A. M. Convergence of a full discretization for a second-order nonlinear elastodynamic equation in isotropic and anisotropic Orlicz spaces. Zeitschrift f¨ur angewandte Mathematik und Physik. 68, 118 (2017).
dc.relation.references[14] Elmassoudi M., Aberqi A., Bennouna J. Existence of Entropy Solutions in Musielak–Orlicz Spaces Via a Sequence of Penalized Equations. Boletim da Sociedade Paranaense de Matem´atica. 38 (6), 203–238 (2020).
dc.relation.references[15] Ait Khellou M., Benkirane A., Douiri S. M. Some properties of Musielak spaces with only the log-H¨older continuity condition and application. Annals of Functional Analysis. 11, 1062–1080 (2020).
dc.relation.references[16] Benkirane A., Sidi El Vally M. Some approximation properties in Musielak–Orlicz–Sobolev spaces. Thai journal of mathematics. 10 (2), 371–381 (2012).
dc.relation.references[17] Elemine Vall M. S. B., Ahmed A., Touzani A., Benkirane A. Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L 1 data. Boletim da Sociedade Paranaense de Matem´atica. 36 (1), 125–150 (2018).
dc.relation.references[18] Gossez J. P. Some approximation properties in Orlicz–Sobolev spaces. Studia Mathematica. 74 (1), 17–24 (1982).
dc.relation.references[19] Ciarlet P. G. Finite element methods (Part 1). Handbook of Numerical Analysis. Vol. 2. North-Holland, Amsterdam (1991).
dc.relation.references[20] Diening L., R ˙uˇziˇcka M. Interpolation operators in Orlicz–Sobolev spaces. Numerische Mathematik. 107, 107–129 (2007).
dc.relation.references[21] Aberqi A., Bennouna J., Elmassoudi M. Nonlinear elliptic equations with some measure data in Musielak–Orlicz space. Nonlinear Dynamics and Systems Theory. 19 (2), 227–242 (2019).
dc.relation.references[22] Gossez J.-P. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Amer. Math. Soc. 190, 163–205 (1974).
dc.relation.referencesen[1] Gwiazda P., Swierczewska-Gwiazda A., Wr´oblewska A. Monotonicity methods in generalized Orlicz spaces ˙ for a class of non-Newtonian fluids. Math. Methods Appl. Sci. 33 (2), 125–137 (2010).
dc.relation.referencesen[2] Musielak J. Modular spaces and Orlicz spaces. Lecture Notes in Math. (1983).
dc.relation.referencesen[3] Del Vecchio T., Posteraro M. R. Existence and regularity results for nonlinear elliptic equations with measure data. Adv. Differential Equations. 1 (5), 899–917 (1996).
dc.relation.referencesen[4] Di Nardo R., Feo F., Guib´e O. Existence result for nonlinear parabolic equations with lower order terms. Analysis and Applications. 9 (2), 161–186 (2011).
dc.relation.referencesen[5] Blanchard D., Murat F., Redwane H. Existence and uniqueness of a renormalized solution for fairly general class of non linear parabolic problems. Journal of Differential Equations. 177 (2), 331–374 (2001).
dc.relation.referencesen[6] Aberqi A., Bennouna J., Mekkour M., Redwane H. Renormalized solution for a nonlinear parabolic equation with lower order terms. The Australian Journal of Mathematical Analysis and Applications. 10 (1), 1–15 (2013).
dc.relation.referencesen[7] Aberqi A., Bennouna J., Mekkour M., Redwane H. Nonlinear parabolic inequality with lower order terms. Applicable Analysis. 96 (12), 2102–2117 (2017).
dc.relation.referencesen[8] Aharouch L., Bennouna J. Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Analysis: Theory, Methods & Applications. 72 (9–10), 3553–3565 (2010).
dc.relation.referencesen[9] Aberqi A., Bennouna J., Elmassoudi M., Hammoumi M. Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces. Monatshefte f¨ur Mathematik. 189, 195–219 (2019).
dc.relation.referencesen[10] Mukminov F. Kh. Uniqueness of the renormalized solutions to the cauchy problem for an anistropic parabolic equation. Ufa Mathematical Journal. 8 (2), 44–57 (2016).
dc.relation.referencesen[11] Mukminov F. Kh. Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev–Orlicz spaces. Sbornik: Mathematics. 208 (8), 1187–1206 (2017).
dc.relation.referencesen[12] Emmrich E., Wroblewska-Kaminska A. Convergence of a full discretization of quasi-linear parabolic equations in isotropic and anisotropic Orlicz spaces. SIAM Journal on Numerical Analysis. 51 (2), 1163–1184 (2013).
dc.relation.referencesen[13] Ruf A. M. Convergence of a full discretization for a second-order nonlinear elastodynamic equation in isotropic and anisotropic Orlicz spaces. Zeitschrift f¨ur angewandte Mathematik und Physik. 68, 118 (2017).
dc.relation.referencesen[14] Elmassoudi M., Aberqi A., Bennouna J. Existence of Entropy Solutions in Musielak–Orlicz Spaces Via a Sequence of Penalized Equations. Boletim da Sociedade Paranaense de Matem´atica. 38 (6), 203–238 (2020).
dc.relation.referencesen[15] Ait Khellou M., Benkirane A., Douiri S. M. Some properties of Musielak spaces with only the log-H¨older continuity condition and application. Annals of Functional Analysis. 11, 1062–1080 (2020).
dc.relation.referencesen[16] Benkirane A., Sidi El Vally M. Some approximation properties in Musielak–Orlicz–Sobolev spaces. Thai journal of mathematics. 10 (2), 371–381 (2012).
dc.relation.referencesen[17] Elemine Vall M. S. B., Ahmed A., Touzani A., Benkirane A. Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L 1 data. Boletim da Sociedade Paranaense de Matem´atica. 36 (1), 125–150 (2018).
dc.relation.referencesen[18] Gossez J. P. Some approximation properties in Orlicz–Sobolev spaces. Studia Mathematica. 74 (1), 17–24 (1982).
dc.relation.referencesen[19] Ciarlet P. G. Finite element methods (Part 1). Handbook of Numerical Analysis. Vol. 2. North-Holland, Amsterdam (1991).
dc.relation.referencesen[20] Diening L., R ˙uˇziˇcka M. Interpolation operators in Orlicz–Sobolev spaces. Numerische Mathematik. 107, 107–129 (2007).
dc.relation.referencesen[21] Aberqi A., Bennouna J., Elmassoudi M. Nonlinear elliptic equations with some measure data in Musielak–Orlicz space. Nonlinear Dynamics and Systems Theory. 19 (2), 227–242 (2019).
dc.relation.referencesen[22] Gossez J.-P. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Amer. Math. Soc. 190, 163–205 (1974).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectдискретний розв’язок
dc.subjectпараболічне рівняння
dc.subjectслабкий розв’язок
dc.subjectпростори Мусейлака
dc.subjectнестандартне зростання
dc.subjectзворотня схема Ейлера
dc.subjectвнутрішнє наближення
dc.subjectdiscrete solution
dc.subjectparabolic equation
dc.subjectweak solution
dc.subjectMuseilak-spaces
dc.subjectnonstandard growth
dc.subjectbackward Euler scheme
dc.subjectintern approximations
dc.titleDiscrete solution for the nonlinear parabolic equations with diffusion terms in Museilak–spaces
dc.title.alternativeДискретний розв’язок нелінійних параболічних рівнянь із дифузійними членами в просторах Мусейлака
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021v8n4_Aberqi_A-Discrete_solution_for_the_584-600.pdf
Size:
2.12 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2021v8n4_Aberqi_A-Discrete_solution_for_the_584-600__COVER.png
Size:
298.7 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: