On prospects of astronomo-geodesic leveling for coordinate support of geodynamic and technogenic polygons

dc.citation.epage93
dc.citation.issue93
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage85
dc.contributor.affiliationІвано-Франківський національний технічний університет нафти і газу
dc.contributor.affiliationОдеський національний політехнічний університет
dc.contributor.affiliationIvano-Frankivsk National Technical University of Oil and Gas
dc.contributor.affiliationOdessa National Polytechnic University
dc.contributor.authorБурак, Костянтин
dc.contributor.authorЯрош, Костянтин
dc.contributor.authorBurak, Kostyantyn O.
dc.contributor.authorYarosh, Kostiantyn
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-03-02T09:08:35Z
dc.date.available2023-03-02T09:08:35Z
dc.date.created2021-03-12
dc.date.issued2021-03-12
dc.description.abstractМета цієї роботи – теоретично обґрунтувати необхідність продовження робіт в Україні зі створення зенітних систем та астрономо-геометричного нівелювання з використанням Глобальних навігаційних супутникових систем (ГНСС) та приладів, які забезпечують точність вимірів відхилень виска 0,1– 0,2", для вивчення неотектонічних процесів як на геодинамічних полігонах, так і техногенних, які створюють для побудови геодезичної основи для будівництва та експлуатації надзвичайно важливих об’єктів. Методику досягнення мети забезпечено теоретичними дослідженнями існуючих способів астрономо-геометричного нівелювання, сучасних методів прогнозу неотектонічних процесів, точності ГНСС та геометричного нівелювання. Основні результати – встановлено теоретичну можливість використання повторного астрономо-геометричного нівелювання для оцінки змін радіусів кривизни еквіпотенціальних поверхонь, контролю результатів геометричного і ГНСС нівелювання. Наукова новизна: теоретично обґрунтовано можливість використання повторного астрономогеометричного нівелювання спеціально створених профілів на геодинамічних полігонах для оцінки змін радіусів кривизни еквіпотенціальних поверхонь, з якими сучасні наукові гіпотези пов’язують можливість прогнозу землетрусів, контролю ГНСС і геометричного нівелювання з використанням геоїдальної складової на цих профілях, ідея синхронних спостережень з використанням зеніт систем при астрономо-геометричному нівелюванні.
dc.description.abstractThe purpose of this work is to show the prospects and the need to continue work in Ukraine on the creation of anti-aircraft systems and astronomical geodetic leveling (a combination of astronomical and high-precision geometric leveling), using GNSS and instruments that provide accurate measurements of deviations of the temple 0.1 geodynamic landfills and man-made, which create for the construction of a height foundation for the construction and operation of extremely important facilities. The method of achieving the goal is provided by theoretical studies of existing methods of astronomical and geodetic leveling, modern methods of forecasting neotectonic processes, GNSS accuracy and geometric leveling. The main results – the possibility of using astronomical and geodetic leveling in the forecast of catastrophic deformations of the earth's surface, including earthquakes, control of the results of geometric and GNSS leveling.Scientific novelty: recommendations for the use of astronomical and geodetic leveling of specially created profiles on geodynamic landfills for forecasting neotectonic processes, GNSS control and geometric leveling using the geoidal component, the idea of synchronous observations using zenith systems in astronomical and geodetic leveling.
dc.format.extent85-93
dc.format.pages9
dc.identifier.citationBurak K. O. On prospects of astronomo-geodesic leveling for coordinate support of geodynamic and technogenic polygons / Kostyantyn O. Burak, Kostiantyn Yarosh // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2021. — No 93. — P. 85–93.
dc.identifier.citationenBurak K. O. On prospects of astronomo-geodesic leveling for coordinate support of geodynamic and technogenic polygons / Kostyantyn O. Burak, Kostiantyn Yarosh // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2021. — No 93. — P. 85–93.
dc.identifier.doidoi.org/10.23939/istcgcap2021.93.085
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57461
dc.language.isoen
dc.publisherВидавництво Національного університету “Львівська політехніка”
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 93, 2021
dc.relation.ispartofGeodesy, cartography and aerial photography, 93, 2021
dc.relation.referencesAlbayrak, M., Hirt, C., Guillaume, S., Özlüdemir, M. T.,
dc.relation.referencesHalıcıoğlu, K., & Başoğlu, B. (2019). New astrogeodetic
dc.relation.referencesobservations of vertical deflections at the Istanbul
dc.relation.referencesastrogeodetic network demonstrate ıssues in global
dc.relation.referencesgravity models along coastlines. 27th IUGG General
dc.relation.referencesAssembly.
dc.relation.referencesBorovyi, V. O, & Burachek, V. G. (2017). High-precision
dc.relation.referencesengineering and geodetic measurements: a textbook.
dc.relation.referencesVinnitsa: LLC "Nilan-LTD", 236 p. (in Ukrainian).
dc.relation.referencesBorovyi, V. O, Burachek, V. G, Goncharenko, O. S, &
dc.relation.referencesKarpinsky, Y. O. Declaratory patent for invention 63575 A of Ukraine. # 2003054111. Applied 06.05.2003. Publ.15.01.2004. Bull.1. (in Ukrainian).
dc.relation.referencesBurak, K., & Lysko, B. (2018). Implementation of
dc.relation.referencesalternative algorithms for defining the transformation
dc.relation.referencesparamerts of USK=2000 and coordinate systems of
dc.relation.referencesgeneral layout during the marking operations. Archives
dc.relation.referencesof institute of civil ingeniring. N27. Poznań. ISSN 1897–4007.
dc.relation.referencesCacoń, S., Bosy, J., & Kontny, B. (1999). The GPS
dc.relation.referencesleveling network in the conurbation of Wroclaw. Artifical
dc.relation.referencesSatellites, 34(3), 163–170.
dc.relation.referencesCzarnecki, K. (2010). Geodezja wspolczesna. Katowice,
dc.relation.referencesWydawnictwo Gall, 487 p.
dc.relation.referencesDarren Kerr (2015). Height Modernization from Static
dc.relation.referencesGPS Networks in Oregon: Evaluating NGS Guidelines
dc.relation.referencesand OPUS-Projects.
dc.relation.referencesDvulit, P. D., & Golubinka, Y. I. (2009). Comparative
dc.relation.referencescharacteristics of determining the heights of the quasigeoid of the territory of Ukraine using models of
dc.relation.referencesgeoid/quasi-geoid and the gravitational field of the
dc.relation.referencesEarth. Geodesy, cartography and aerial photography. 72, 27–34. (in Ukrainian).
dc.relation.referencesDvulit, P., Dvulit, Z., & Sidorov, I. (2019). Determination
dc.relation.referencesof plumb lines with using trigonometric leveling and
dc.relation.referencesGNSS measurements. Geodesy, Cartography, and
dc.relation.referencesAerial Photography, 89, 12–19.
dc.relation.referencesGlazunov, A. S. (2008, April). Modern trends in geodetic
dc.relation.referencesastronomy. In GEO-SIBIR’-2008, Sb. materialov IV
dc.relation.referencesMezhdunar. nauch. congress (GEO-SIBIR’-2008,
dc.relation.referencesProc. IV Int. Scientific Congress) (p. 183-188).
dc.relation.referencesGlazunov, A. S. (2017). Status and prospects of development of geodesic astronomy in the russian federation.
dc.relation.references(in Russian).
dc.relation.referencesHirt, C., & Burki, B. (2006). Status of Geodetic Astronomy
dc.relation.referencesat the Beginning of the 21st Century. Retrieved from:
dc.relation.referenceshttp://www.ife.unihannover.de/mitarbeiter/seeber/seeber_65/pdf_65/hirt8.pdf
dc.relation.referencesHirt, C., Seeber, G., Bürki, B., & Müller, A. (2006). Die
dc.relation.referencesdigitalen Zenitcamera systeme TZK2-D und DIADEM
dc.relation.referenceszur hochpräzisen Geoidbestimmung. Retrieved from:
dc.relation.referenceshttp://www.mplusm.at/ifg/download/hirt-05.pdf3Carlson, A. A. (1964). Measurement of deformations
dc.relation.referencesof engineering constructions. Moscow: Nedra. (in
dc.relation.referencesRussian).
dc.relation.referencesIvashchenko, M. V. (2017). Estimation of velocities
dc.relation.referencesaccording to GNSS observations In the Center for
dc.relation.referencesGNSS data analysis of GAO NAS of Ukraine for
dc.relation.referencesfurther geodynamic research. Bulletin of the
dc.relation.referencesAstronomical School, 13, 48-53. (in Ukrainian).
dc.relation.referencesKarpenko, I. V. (2007). Physical bases of tectonics of global
dc.relation.referencescatastrophes. Coll. Science. prot Ukr. state geological
dc.relation.referencesexploration. in-tu. Kyiv: Ukr. state geological survey.
dc.relation.referencesInst., 3, 74–82. (in Ukrainian).
dc.relation.referencesKarpenko, I. V. (2011). Gravitational potential: definition
dc.relation.referencesand measurement at points on the surface of a
dc.relation.referencesnonspherical inhomogeneous body. Geophysical Journal, 4. 33, 74–88. (in Ukrainian).
dc.relation.referencesKrasnorylov, I. I., Lvov, V. G, & Safonov, G. D. (1995).
dc.relation.referencesAbout astronomical definitions in AGS of the USSR
dc.relation.referencesand problems of geodetic astronomy. Geodesy and
dc.relation.referencescartography. 8. 22–27. (in Russian).
dc.relation.referencesLeica-absolute-tracker-t960-canner-(2020).
dc.relation.referenceshttps://www.hexagonmi.com/products/laser-trackerіystems/ bundle30.
dc.relation.referencesMedovikov, A., & Nigamatyanov, R. (2016). patent,
dc.relation.referencesRetrieved from: https://findpatent.ru/patent/176/1760313.html
dc.relation.referencesMinster, J. B., Wysession M. E. et al. (2010) Precise
dc.relation.referencesGeodetic Infrastructure. National Requirements for a
dc.relation.referencesShared Resource. The National academies press. p. 142.
dc.relation.referencesMolodensky, M. S, Eremeev, V. F., & Yurkina, M. I.
dc.relation.references(1960). Methods of studying the external gravitational
dc.relation.referencesfield and the shape of the Earth. Proceedings of
dc.relation.referencesTsNIIGAiK, 131. 251 p. (in Russian).
dc.relation.referencesMoritz, G. (1979). Modern physical geodesy, Moscow:
dc.relation.references“Nedra”, 200 p. (in Russian).
dc.relation.referencesOstrovsky, A. E. (1978). Deformations of the earth's crust by
dc.relation.referencesobservations of slopes. Moscow. Science, 184 p. (in
dc.relation.referencesRussian).
dc.relation.referencesOstrovsky, A. L., Burak, K. O., Zablocki, F. D.,
dc.relation.referencesЧерняга, P. G., & Tretiak, К. R.; under. ed.
dc.relation.referencesOstrovsky A. L. (1998). Methodical manual on the
dc.relation.referencesorganization of complex researches on geodynamic
dc.relation.referencesranges of Ukraine. Section 5. Geodetic monitoring.
dc.relation.referencesCollective monograph. Lviv, 58 p. (in Ukrainian).
dc.relation.referencesPellinen, L. P. (1978). Higher Geodesy (Theoretical
dc.relation.referencesGeodesy). Moscow, Nedra, 264 p. (in Russian).
dc.relation.referencesPetrov, S. L. (2018). Monitoring of vertical displacements
dc.relation.referencesof technogenic loaded territories by geodetic methods.
dc.relation.referencesThe dissertation on competition of a scientific degree of
dc.relation.referencesthe candidate of technical sciences on a specialty 05.24.01 “Geodesy, photogrammetry and cartography”.
dc.relation.referencesLviv Polytechnic National University, Ministry of
dc.relation.referencesEducation and Science of Ukraine. Lviv. (in Ukrainian).
dc.relation.referencesPlag, H. P., Rothacher, M., Pearlman, M., Neilan, R., &
dc.relation.referencesMa, C. (2009). The global geodetic observing system.
dc.relation.referencesIn Advances in Geosciences: Volume 13: Solid Earth
dc.relation.references(SE) (p. 105–127).
dc.relation.referencesSavchuk, S. G. (2000). Higher Geodesy (Spheroidic Geodesy). Textbook. Lviv: Liga-Press, 248 p. (in Ukrainian).
dc.relation.referencesSchack, P., Hirt, C., Hauk, M., Featherstone, W. E.,
dc.relation.referencesLyon, T. J., & Guillaume, S. (2018). A high-precision
dc.relation.referencesdigital astrogeodetic traverse in an area of steep geoid
dc.relation.referencesgradients close to the coast of Perth, Western Australia.
dc.relation.referencesJournal of Geodesy, 92(10), 1143–1153
dc.relation.referencesSerapinas, B. B. (2002). Geodetic bases of maps.
dc.relation.referencesGravitational field. Heights Lecture 7. (in Russian).
dc.relation.referenceshttp://www.geogr.msu.ru/cafedra/karta/docs/GOK/gok_lecture_7.pdf
dc.relation.referencesStaroseltsev, L. P., & Yashnikova, O. M. (2016).
dc.relation.referencesEstimation of errors in parameters determination for
dc.relation.referencesthe of the Earth highly anomalous gravity field. Scientific
dc.relation.referencesand technical bulletin of information technologies,
dc.relation.referencesmechanics and optics, 16 (3). (in Russian).
dc.relation.referencesSystem Solution. https://systemnet.com.ua (2019)
dc.relation.referencesTretyak, K., & Sidorov, I. (2012). Joint processing of
dc.relation.referencessatellite and ground geodetic measurements of highprecision construction network of the Dniester PSP.
dc.relation.referencesBulletin of Geodesy and Cartography, 3 (78), 6–9. (in
dc.relation.referencesUkrainian).
dc.relation.referencesZakharov, V. D. (2003). Gravity. From Aristotle to
dc.relation.referencesEinstein. Moscow: BINOM, 278 p. (in Russian).
dc.relation.referencesZariņš, A., Rubans, A., & Silabriedis, G. (2016). Digital
dc.relation.referenceszenith camera of the University of Latvia. Geodesy
dc.relation.referencesand Cartography, 42(4), 129–135.
dc.relation.referencesenAlbayrak, M., Hirt, C., Guillaume, S., Özlüdemir, M. T.,
dc.relation.referencesenHalıcıoğlu, K., & Başoğlu, B. (2019). New astrogeodetic
dc.relation.referencesenobservations of vertical deflections at the Istanbul
dc.relation.referencesenastrogeodetic network demonstrate ıssues in global
dc.relation.referencesengravity models along coastlines. 27th IUGG General
dc.relation.referencesenAssembly.
dc.relation.referencesenBorovyi, V. O, & Burachek, V. G. (2017). High-precision
dc.relation.referencesenengineering and geodetic measurements: a textbook.
dc.relation.referencesenVinnitsa: LLC "Nilan-LTD", 236 p. (in Ukrainian).
dc.relation.referencesenBorovyi, V. O, Burachek, V. G, Goncharenko, O. S, &
dc.relation.referencesenKarpinsky, Y. O. Declaratory patent for invention 63575 A of Ukraine. # 2003054111. Applied 06.05.2003. Publ.15.01.2004. Bull.1. (in Ukrainian).
dc.relation.referencesenBurak, K., & Lysko, B. (2018). Implementation of
dc.relation.referencesenalternative algorithms for defining the transformation
dc.relation.referencesenparamerts of USK=2000 and coordinate systems of
dc.relation.referencesengeneral layout during the marking operations. Archives
dc.relation.referencesenof institute of civil ingeniring. N27. Poznań. ISSN 1897–4007.
dc.relation.referencesenCacoń, S., Bosy, J., & Kontny, B. (1999). The GPS
dc.relation.referencesenleveling network in the conurbation of Wroclaw. Artifical
dc.relation.referencesenSatellites, 34(3), 163–170.
dc.relation.referencesenCzarnecki, K. (2010). Geodezja wspolczesna. Katowice,
dc.relation.referencesenWydawnictwo Gall, 487 p.
dc.relation.referencesenDarren Kerr (2015). Height Modernization from Static
dc.relation.referencesenGPS Networks in Oregon: Evaluating NGS Guidelines
dc.relation.referencesenand OPUS-Projects.
dc.relation.referencesenDvulit, P. D., & Golubinka, Y. I. (2009). Comparative
dc.relation.referencesencharacteristics of determining the heights of the quasigeoid of the territory of Ukraine using models of
dc.relation.referencesengeoid/quasi-geoid and the gravitational field of the
dc.relation.referencesenEarth. Geodesy, cartography and aerial photography. 72, 27–34. (in Ukrainian).
dc.relation.referencesenDvulit, P., Dvulit, Z., & Sidorov, I. (2019). Determination
dc.relation.referencesenof plumb lines with using trigonometric leveling and
dc.relation.referencesenGNSS measurements. Geodesy, Cartography, and
dc.relation.referencesenAerial Photography, 89, 12–19.
dc.relation.referencesenGlazunov, A. S. (2008, April). Modern trends in geodetic
dc.relation.referencesenastronomy. In GEO-SIBIR’-2008, Sb. materialov IV
dc.relation.referencesenMezhdunar. nauch. congress (GEO-SIBIR’-2008,
dc.relation.referencesenProc. IV Int. Scientific Congress) (p. 183-188).
dc.relation.referencesenGlazunov, A. S. (2017). Status and prospects of development of geodesic astronomy in the russian federation.
dc.relation.referencesen(in Russian).
dc.relation.referencesenHirt, C., & Burki, B. (2006). Status of Geodetic Astronomy
dc.relation.referencesenat the Beginning of the 21st Century. Retrieved from:
dc.relation.referencesenhttp://www.ife.unihannover.de/mitarbeiter/seeber/seeber_65/pdf_65/hirt8.pdf
dc.relation.referencesenHirt, C., Seeber, G., Bürki, B., & Müller, A. (2006). Die
dc.relation.referencesendigitalen Zenitcamera systeme TZK2-D und DIADEM
dc.relation.referencesenzur hochpräzisen Geoidbestimmung. Retrieved from:
dc.relation.referencesenhttp://www.mplusm.at/ifg/download/hirt-05.pdf3Carlson, A. A. (1964). Measurement of deformations
dc.relation.referencesenof engineering constructions. Moscow: Nedra. (in
dc.relation.referencesenRussian).
dc.relation.referencesenIvashchenko, M. V. (2017). Estimation of velocities
dc.relation.referencesenaccording to GNSS observations In the Center for
dc.relation.referencesenGNSS data analysis of GAO NAS of Ukraine for
dc.relation.referencesenfurther geodynamic research. Bulletin of the
dc.relation.referencesenAstronomical School, 13, 48-53. (in Ukrainian).
dc.relation.referencesenKarpenko, I. V. (2007). Physical bases of tectonics of global
dc.relation.referencesencatastrophes. Coll. Science. prot Ukr. state geological
dc.relation.referencesenexploration. in-tu. Kyiv: Ukr. state geological survey.
dc.relation.referencesenInst., 3, 74–82. (in Ukrainian).
dc.relation.referencesenKarpenko, I. V. (2011). Gravitational potential: definition
dc.relation.referencesenand measurement at points on the surface of a
dc.relation.referencesennonspherical inhomogeneous body. Geophysical Journal, 4. 33, 74–88. (in Ukrainian).
dc.relation.referencesenKrasnorylov, I. I., Lvov, V. G, & Safonov, G. D. (1995).
dc.relation.referencesenAbout astronomical definitions in AGS of the USSR
dc.relation.referencesenand problems of geodetic astronomy. Geodesy and
dc.relation.referencesencartography. 8. 22–27. (in Russian).
dc.relation.referencesenLeica-absolute-tracker-t960-canner-(2020).
dc.relation.referencesenhttps://www.hexagonmi.com/products/laser-trackeriystems/ bundle30.
dc.relation.referencesenMedovikov, A., & Nigamatyanov, R. (2016). patent,
dc.relation.referencesenRetrieved from: https://findpatent.ru/patent/176/1760313.html
dc.relation.referencesenMinster, J. B., Wysession M. E. et al. (2010) Precise
dc.relation.referencesenGeodetic Infrastructure. National Requirements for a
dc.relation.referencesenShared Resource. The National academies press. p. 142.
dc.relation.referencesenMolodensky, M. S, Eremeev, V. F., & Yurkina, M. I.
dc.relation.referencesen(1960). Methods of studying the external gravitational
dc.relation.referencesenfield and the shape of the Earth. Proceedings of
dc.relation.referencesenTsNIIGAiK, 131. 251 p. (in Russian).
dc.relation.referencesenMoritz, G. (1979). Modern physical geodesy, Moscow:
dc.relation.referencesen"Nedra", 200 p. (in Russian).
dc.relation.referencesenOstrovsky, A. E. (1978). Deformations of the earth's crust by
dc.relation.referencesenobservations of slopes. Moscow. Science, 184 p. (in
dc.relation.referencesenRussian).
dc.relation.referencesenOstrovsky, A. L., Burak, K. O., Zablocki, F. D.,
dc.relation.referencesenCherniaha, P. G., & Tretiak, K. R.; under. ed.
dc.relation.referencesenOstrovsky A. L. (1998). Methodical manual on the
dc.relation.referencesenorganization of complex researches on geodynamic
dc.relation.referencesenranges of Ukraine. Section 5. Geodetic monitoring.
dc.relation.referencesenCollective monograph. Lviv, 58 p. (in Ukrainian).
dc.relation.referencesenPellinen, L. P. (1978). Higher Geodesy (Theoretical
dc.relation.referencesenGeodesy). Moscow, Nedra, 264 p. (in Russian).
dc.relation.referencesenPetrov, S. L. (2018). Monitoring of vertical displacements
dc.relation.referencesenof technogenic loaded territories by geodetic methods.
dc.relation.referencesenThe dissertation on competition of a scientific degree of
dc.relation.referencesenthe candidate of technical sciences on a specialty 05.24.01 "Geodesy, photogrammetry and cartography".
dc.relation.referencesenLviv Polytechnic National University, Ministry of
dc.relation.referencesenEducation and Science of Ukraine. Lviv. (in Ukrainian).
dc.relation.referencesenPlag, H. P., Rothacher, M., Pearlman, M., Neilan, R., &
dc.relation.referencesenMa, C. (2009). The global geodetic observing system.
dc.relation.referencesenIn Advances in Geosciences: Volume 13: Solid Earth
dc.relation.referencesen(SE) (p. 105–127).
dc.relation.referencesenSavchuk, S. G. (2000). Higher Geodesy (Spheroidic Geodesy). Textbook. Lviv: Liga-Press, 248 p. (in Ukrainian).
dc.relation.referencesenSchack, P., Hirt, C., Hauk, M., Featherstone, W. E.,
dc.relation.referencesenLyon, T. J., & Guillaume, S. (2018). A high-precision
dc.relation.referencesendigital astrogeodetic traverse in an area of steep geoid
dc.relation.referencesengradients close to the coast of Perth, Western Australia.
dc.relation.referencesenJournal of Geodesy, 92(10), 1143–1153
dc.relation.referencesenSerapinas, B. B. (2002). Geodetic bases of maps.
dc.relation.referencesenGravitational field. Heights Lecture 7. (in Russian).
dc.relation.referencesenhttp://www.geogr.msu.ru/cafedra/karta/docs/GOK/gok_lecture_7.pdf
dc.relation.referencesenStaroseltsev, L. P., & Yashnikova, O. M. (2016).
dc.relation.referencesenEstimation of errors in parameters determination for
dc.relation.referencesenthe of the Earth highly anomalous gravity field. Scientific
dc.relation.referencesenand technical bulletin of information technologies,
dc.relation.referencesenmechanics and optics, 16 (3). (in Russian).
dc.relation.referencesenSystem Solution. https://systemnet.com.ua (2019)
dc.relation.referencesenTretyak, K., & Sidorov, I. (2012). Joint processing of
dc.relation.referencesensatellite and ground geodetic measurements of highprecision construction network of the Dniester PSP.
dc.relation.referencesenBulletin of Geodesy and Cartography, 3 (78), 6–9. (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenZakharov, V. D. (2003). Gravity. From Aristotle to
dc.relation.referencesenEinstein. Moscow: BINOM, 278 p. (in Russian).
dc.relation.referencesenZariņš, A., Rubans, A., & Silabriedis, G. (2016). Digital
dc.relation.referencesenzenith camera of the University of Latvia. Geodesy
dc.relation.referencesenand Cartography, 42(4), 129–135.
dc.relation.urihttp://www.ife.unihannover.de/mitarbeiter/seeber/seeber_65/pdf_65/hirt8.pdf
dc.relation.urihttp://www.mplusm.at/ifg/download/hirt-05.pdf3Carlson
dc.relation.urihttps://www.hexagonmi.com/products/laser-trackerіystems/
dc.relation.urihttps://findpatent.ru/patent/176/1760313.html
dc.relation.urihttp://www.geogr.msu.ru/cafedra/karta/docs/GOK/gok_lecture_7.pdf
dc.relation.urihttps://systemnet.com.ua
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectвідхилення прямовисних ліній
dc.subjectзеніт-системи
dc.subjectГНСС
dc.subjectгеодезичні та ортометричні висоти
dc.subjectастрономічне нівелювання
dc.subjectdeviation of steep lines
dc.subjectzenith systems
dc.subjectGNSS
dc.subjectgeodetic and orthometric heights
dc.subjectastronomicalleveling
dc.subject.udc528.48
dc.titleOn prospects of astronomo-geodesic leveling for coordinate support of geodynamic and technogenic polygons
dc.title.alternativeПро перспективи астрономо-геодезичного нівелювання для координатного забезпечення геодинамічних та техногенних полігонів
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021n93_Burak_K_O-On_prospects_of_astronomo_85-93.pdf
Size:
499.83 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021n93_Burak_K_O-On_prospects_of_astronomo_85-93__COVER.png
Size:
453.17 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: