Алгоритмічно-програмні засоби розпізнавання рукописних символів на зображенні

Abstract

Розглянуто алгоритмічно-програмні засоби розпізнавання рукописних символів на зображенні за алгоритмом логістичної регресії та побудови штучної нейронної мережі (ШНМ). Здійснено порівняльний аналіз цих двох підходів. Виконано тестування рукописних цифр. Встановлено, що краща якість розпізнавання досягається у разі використання штучної нейронної мережі.
In this article is considered the algorithm of logistic regression and construction of the neural network for the recognition of handwritten symbols in the image. Examples of implementation of two approaches for solving the problem of numerical recognition are given. The efficiency of using a neural network, as the provision of the most reliable recognition results, is explored.

Description

Keywords

логістична регресія, штучна нейронна мережа, розпізнавання символів, машинне навчання, функція вартості, градієнт пониження, logistic regression, neural network, symbols recognition, machine learning, cost function, gradient descent

Citation

Парамуд Я. С. Алгоритмічно-програмні засоби розпізнавання рукописних символів на зображенні / Я. С. Парамуд, В. І. Яркун // Вісник Національного університету «Львівська політехніка». Серія: Комп’ютерні системи та мережі. — Львів : Видавництво Львівської політехніки, 2017. — № 881. — С. 98–106.