Low-Pressure Discharge Plasma Treatment of Aqueous Solutions with Mn, Cr and Fe

dc.citation.epage325
dc.citation.issue3
dc.citation.spage317
dc.contributor.affiliationUkrainian State University of Chemical Technology
dc.contributor.affiliationKyiv National University of Technologies and Design
dc.contributor.authorPivovarov, Oleksandr
dc.contributor.authorDerkach, Tetiana
dc.contributor.authorSkiba, Margarita
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T13:09:31Z
dc.date.available2020-03-02T13:09:31Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractДосліджено вплив тліючого розряду пониженого тиску на утворення гідроген пероксиду та зміну ступеню окиснення металів у водних розчинах сполук Мn, Cr та Fe. Показано, що плазмове оброблення спричиняє від- новлення Мn(VII) через Mn(IV) до Mn(II), Cr(VI) до Cr(III) та окиснення Fe(II) до Fe(III). Гідроген пероксид, що утворюється під дією плазмового оброблення, активно бере участь в окисно- відновних реакціях. Концентрація гідроген пероксиду зазвичай збільшується з часом оброблення, однак виявити його наяв- ність стає можливим тільки після закінчення перебігу ак- тивних окисно-відновних процесів.
dc.description.abstractThe effect of low-pressure glow discharge on the formation of peroxide and the degree of oxidation of Mn, Cr and Fe was studied in the aqueous solutions of different compounds. The plasma treatment causes the reduction of Mn(VII) through Mn(IV) to Mn(II), Cr(VI) to Cr(III) and oxidation of Fe(II) to Fe(III). Among other reactive species, peroxide formed under the action of plasma treatment takes an active part in redox reactions. The concentration of peroxide usually increases with treatment time, but its presence is detected only after completion of active redox processes.
dc.format.extent317-325
dc.format.pages9
dc.identifier.citationPivovarov O. Low-Pressure Discharge Plasma Treatment of Aqueous Solutions with Mn, Cr and Fe / Oleksandr Pivovarov, Tetiana Derkach, Margarita Skiba // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 317–325.
dc.identifier.citationenPivovarov O. Low-Pressure Discharge Plasma Treatment of Aqueous Solutions with Mn, Cr and Fe / Oleksandr Pivovarov, Tetiana Derkach, Margarita Skiba // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 317–325.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46492
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (13), 2019
dc.relation.references1. Ishijima T., Nosaka K., Tanaka Y. et al.: Appl. Phys. Lett., 2013, 103, 142101. https://doi.org/10.1063/1.4823530
dc.relation.references2. Vorobyova M., Pivovarov O.: Voprosy Khim. Khim. Tekhnol., 2014, 3, 19.
dc.relation.references3. Mariotti D., Sankaran R. et al.: J. Phys. D, 2011, 44, 174023. https://doi.org/10.1063/1.4823530
dc.relation.references4. SmoluchM., Mielczarek P., Silberring J.:Mass Spectrom. Rev., 2016, 35, 22. https://doi.org/10.1002/mas.21460
dc.relation.references5. Chmilenko F., Derkach T., Smityuk A.: J. Anal. Chem., 2000, 55, 327. https://doi.org/10.1007/BF02757765
dc.relation.references6. Chmilenko F., Pivovarov A., Derkach T. et al.: J. Anal. Chem., 1997, 52, 311.
dc.relation.references7. Fridman G., Friedman G., Gutsol A. et al.: Plasma Proc. Polym., 2008, 5, 503. https://doi.org/10.1002/ppap.200700154
dc.relation.references8. Jiang B., Zheng J., Qiu S. et al.: Chem. Eng. J., 2014, 236, 348. https://doi.org/10.1016/j.cej.2013.09.090
dc.relation.references9. Misra N.: Trends Food Sci. Tech., 2015, 45, 229. https://doi.org/10.1016/j.tifs.2015.06.005
dc.relation.references10. MagureanuM., Piroi D., Mandache N. et al.:Water Research, 2010, 44, 3445. https://doi.org/10.1016/j.watres.2010.03.020
dc.relation.references11. Shutov D., Isakina A., Konovalov A. et al.: High Energ. Chem., 2013, 47, 201. https://doi.org/10.1134/S0018143913040115
dc.relation.references12. Bobkova E., Krasnov D., Sungurova A. et al.: Korean J. Chem. Eng., 2016, 33, 1620. https://doi.org/10.1007/s11814-015-0292-7
dc.relation.references13. Choukourov A., Manukyan A., Shutov D. et al.: Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2016, 59, 4. https://doi.org/10.6060/tcct.20165912.5413
dc.relation.references14. Ramli N., Zaaba S., MustaffaM. et al.: AIP Conf. Proc., 2017, 1824, 030015-1. https://doi.org/10.1063/1.4978833
dc.relation.references15. Brisset J.-L., Moussa D., Doubla A. et al.: Ind. Eng. Chem. Res., 2008, 47, 5761. https://doi.org/10.1021/ie701759y
dc.relation.references16. Jiang B., Guo J., Wang Z. et al.: Chem. Eng. J., 2015, 262, 1144. https://doi.org/10.1016/j.cej.2014.10.064
dc.relation.references17. Pivovarov O., Zakharov R., NikolenkoM.: Chem. Chem. Technol., 2015, 9, 95. https://doi.org/10.23939/chcht09.01.095
dc.relation.references18. Bobkova E., Shikova T., Grinevich V. et al.: High Energ. Chem., 2012, 46, 56. https://doi.org/10.1134/S0018143912010079
dc.relation.references19. De Baerdemaeker F., SimekM., Leys C.: J. Phys. D, 2007, 40, 2801. https://doi.org/10.1088/0022-3727/40/9/021
dc.relation.references20. Maksimov A., Khlyustova A.: High Energ. Chem., 2009, 43, 149. https://doi.org/10.1134/S0018143909030011
dc.relation.references21. Zhao Y., Wang T., WilsonM. et al.: IEEE Transact. Plasma Sci., 2016, 44, 2084. https://doi.org/10.1109/TPS.2016.2547841
dc.relation.references22. Pivovarov A., Kravchenko A., Tishchenko A. et al.: Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/S1070363215050497
dc.relation.references23. Pivovarov A., Nikolenko N., Zakharov R. et al.: Voprosy Khim. Khim. Tekhnol., 2012, 3, 127.
dc.relation.references24. Go D.: J. Phys. Conf. Series, 2015, 646, 012052. https://doi.org/10.1088/1742-6596/646/1/012052
dc.relation.references25. Liu J., He B., Chen Q. et al.: Sci. Rep., 2016, 6, 38454. https://doi.org/10.1038/srep38454
dc.relation.references26. Silkin S.: Elektronnaya ObrabotkaMater., 2014, 50, 106.
dc.relation.references27. Pivovarov A., Zakharov R., Nikolenko N.: Voprosy Khim. Khim. Tekhnol., 2013, 3, 174.
dc.relation.references28. Kuz’micheva L., Titova Yu., Maksimova A. et al.: Surf. Eng. Appl. Electrochem., 2013, 49, 485. https://doi.org/10.3103/S1068375513060100
dc.relation.references29. Kuz’micheva L., Titova Yu., Maksimova A.: Elektronnaya ObrabotkaMater., 2007, 2, 20.
dc.relation.references30. Xiong R., Nikiforov A., Vanraes P. et al.: J. Adv. Oxid. Technol., 2012, 15, 197. http://hdl.handle.net/1854/LU-2125069
dc.relation.references31. Miyahara T., Oizumi M., Nakatani T. et al.: AIP Adv., 2014, 4, 047115. https://doi.org/10.1063/1.4871475
dc.relation.references32. Kutepov A., Zakharov A., Maksimov A., Titov V.: High Energ. Chem., 2003, 37, 317. https://doi.org/10.1023/A:1025704930260
dc.relation.references33. Kuz’micheva L., Maksimova A., Titova Yu.: Elektronnaya ObrabotkaMater., 2005, 5, 47.
dc.relation.referencesen1. Ishijima T., Nosaka K., Tanaka Y. et al., Appl. Phys. Lett., 2013, 103, 142101. https://doi.org/10.1063/1.4823530
dc.relation.referencesen2. Vorobyova M., Pivovarov O., Voprosy Khim. Khim. Tekhnol., 2014, 3, 19.
dc.relation.referencesen3. Mariotti D., Sankaran R. et al., J. Phys. D, 2011, 44, 174023. https://doi.org/10.1063/1.4823530
dc.relation.referencesen4. SmoluchM., Mielczarek P., Silberring J.:Mass Spectrom. Rev., 2016, 35, 22. https://doi.org/10.1002/mas.21460
dc.relation.referencesen5. Chmilenko F., Derkach T., Smityuk A., J. Anal. Chem., 2000, 55, 327. https://doi.org/10.1007/BF02757765
dc.relation.referencesen6. Chmilenko F., Pivovarov A., Derkach T. et al., J. Anal. Chem., 1997, 52, 311.
dc.relation.referencesen7. Fridman G., Friedman G., Gutsol A. et al., Plasma Proc. Polym., 2008, 5, 503. https://doi.org/10.1002/ppap.200700154
dc.relation.referencesen8. Jiang B., Zheng J., Qiu S. et al., Chem. Eng. J., 2014, 236, 348. https://doi.org/10.1016/j.cej.2013.09.090
dc.relation.referencesen9. Misra N., Trends Food Sci. Tech., 2015, 45, 229. https://doi.org/10.1016/j.tifs.2015.06.005
dc.relation.referencesen10. MagureanuM., Piroi D., Mandache N. et al.:Water Research, 2010, 44, 3445. https://doi.org/10.1016/j.watres.2010.03.020
dc.relation.referencesen11. Shutov D., Isakina A., Konovalov A. et al., High Energ. Chem., 2013, 47, 201. https://doi.org/10.1134/S0018143913040115
dc.relation.referencesen12. Bobkova E., Krasnov D., Sungurova A. et al., Korean J. Chem. Eng., 2016, 33, 1620. https://doi.org/10.1007/s11814-015-0292-7
dc.relation.referencesen13. Choukourov A., Manukyan A., Shutov D. et al., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2016, 59, 4. https://doi.org/10.6060/tcct.20165912.5413
dc.relation.referencesen14. Ramli N., Zaaba S., MustaffaM. et al., AIP Conf. Proc., 2017, 1824, 030015-1. https://doi.org/10.1063/1.4978833
dc.relation.referencesen15. Brisset J.-L., Moussa D., Doubla A. et al., Ind. Eng. Chem. Res., 2008, 47, 5761. https://doi.org/10.1021/ie701759y
dc.relation.referencesen16. Jiang B., Guo J., Wang Z. et al., Chem. Eng. J., 2015, 262, 1144. https://doi.org/10.1016/j.cej.2014.10.064
dc.relation.referencesen17. Pivovarov O., Zakharov R., NikolenkoM., Chem. Chem. Technol., 2015, 9, 95. https://doi.org/10.23939/chcht09.01.095
dc.relation.referencesen18. Bobkova E., Shikova T., Grinevich V. et al., High Energ. Chem., 2012, 46, 56. https://doi.org/10.1134/S0018143912010079
dc.relation.referencesen19. De Baerdemaeker F., SimekM., Leys C., J. Phys. D, 2007, 40, 2801. https://doi.org/10.1088/0022-3727/40/9/021
dc.relation.referencesen20. Maksimov A., Khlyustova A., High Energ. Chem., 2009, 43, 149. https://doi.org/10.1134/S0018143909030011
dc.relation.referencesen21. Zhao Y., Wang T., WilsonM. et al., IEEE Transact. Plasma Sci., 2016, 44, 2084. https://doi.org/10.1109/TPS.2016.2547841
dc.relation.referencesen22. Pivovarov A., Kravchenko A., Tishchenko A. et al., Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/S1070363215050497
dc.relation.referencesen23. Pivovarov A., Nikolenko N., Zakharov R. et al., Voprosy Khim. Khim. Tekhnol., 2012, 3, 127.
dc.relation.referencesen24. Go D., J. Phys. Conf. Series, 2015, 646, 012052. https://doi.org/10.1088/1742-6596/646/1/012052
dc.relation.referencesen25. Liu J., He B., Chen Q. et al., Sci. Rep., 2016, 6, 38454. https://doi.org/10.1038/srep38454
dc.relation.referencesen26. Silkin S., Elektronnaya ObrabotkaMater., 2014, 50, 106.
dc.relation.referencesen27. Pivovarov A., Zakharov R., Nikolenko N., Voprosy Khim. Khim. Tekhnol., 2013, 3, 174.
dc.relation.referencesen28. Kuz’micheva L., Titova Yu., Maksimova A. et al., Surf. Eng. Appl. Electrochem., 2013, 49, 485. https://doi.org/10.3103/S1068375513060100
dc.relation.referencesen29. Kuz’micheva L., Titova Yu., Maksimova A., Elektronnaya ObrabotkaMater., 2007, 2, 20.
dc.relation.referencesen30. Xiong R., Nikiforov A., Vanraes P. et al., J. Adv. Oxid. Technol., 2012, 15, 197. http://hdl.handle.net/1854/LU-2125069
dc.relation.referencesen31. Miyahara T., Oizumi M., Nakatani T. et al., AIP Adv., 2014, 4, 047115. https://doi.org/10.1063/1.4871475
dc.relation.referencesen32. Kutepov A., Zakharov A., Maksimov A., Titov V., High Energ. Chem., 2003, 37, 317. https://doi.org/10.1023/A:1025704930260
dc.relation.referencesen33. Kuz’micheva L., Maksimova A., Titova Yu., Elektronnaya ObrabotkaMater., 2005, 5, 47.
dc.relation.urihttps://doi.org/10.1063/1.4823530
dc.relation.urihttps://doi.org/10.1002/mas.21460
dc.relation.urihttps://doi.org/10.1007/BF02757765
dc.relation.urihttps://doi.org/10.1002/ppap.200700154
dc.relation.urihttps://doi.org/10.1016/j.cej.2013.09.090
dc.relation.urihttps://doi.org/10.1016/j.tifs.2015.06.005
dc.relation.urihttps://doi.org/10.1016/j.watres.2010.03.020
dc.relation.urihttps://doi.org/10.1134/S0018143913040115
dc.relation.urihttps://doi.org/10.1007/s11814-015-0292-7
dc.relation.urihttps://doi.org/10.6060/tcct.20165912.5413
dc.relation.urihttps://doi.org/10.1063/1.4978833
dc.relation.urihttps://doi.org/10.1021/ie701759y
dc.relation.urihttps://doi.org/10.1016/j.cej.2014.10.064
dc.relation.urihttps://doi.org/10.23939/chcht09.01.095
dc.relation.urihttps://doi.org/10.1134/S0018143912010079
dc.relation.urihttps://doi.org/10.1088/0022-3727/40/9/021
dc.relation.urihttps://doi.org/10.1134/S0018143909030011
dc.relation.urihttps://doi.org/10.1109/TPS.2016.2547841
dc.relation.urihttps://doi.org/10.1134/S1070363215050497
dc.relation.urihttps://doi.org/10.1088/1742-6596/646/1/012052
dc.relation.urihttps://doi.org/10.1038/srep38454
dc.relation.urihttps://doi.org/10.3103/S1068375513060100
dc.relation.urihttp://hdl.handle.net/1854/LU-2125069
dc.relation.urihttps://doi.org/10.1063/1.4871475
dc.relation.urihttps://doi.org/10.1023/A:1025704930260
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Pivovarov O., Derkach T., Skiba M., 2019
dc.subjectоброблення плазмовим розрядом пониженого тиску
dc.subjectокисно-відновні реакції
dc.subjectутворення гідроген пероксиду
dc.subjectвідновлення
dc.subjectокиснення
dc.subjectlow-pressure glow discharge plasma treatment
dc.subjectredox reactions
dc.subjectperoxide formation
dc.subjectreduction
dc.subjectoxidation
dc.titleLow-Pressure Discharge Plasma Treatment of Aqueous Solutions with Mn, Cr and Fe
dc.title.alternativeОброблення плазмовим розрядом пониженого тиску водних розчинів, що містять Mn, Cr ТА Fe
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v13n3_Pivovarov_O-Low_Pressure_Discharge_317-325.pdf
Size:
498.42 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v13n3_Pivovarov_O-Low_Pressure_Discharge_317-325__COVER.png
Size:
551.71 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.98 KB
Format:
Plain Text
Description: