Semi-infinite metallic system: QST versus DFT

dc.citation.epage185
dc.citation.issue1
dc.citation.spage178
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКостробій, П. П.
dc.contributor.authorМаркович, Б. М.
dc.contributor.authorРижа, І.
dc.contributor.authorKostrobij, P. P.
dc.contributor.authorMarkovych, B. M.
dc.contributor.authorRyzha, I. A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-12-13T09:11:04Z
dc.date.available2023-12-13T09:11:04Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractРозглянуто два підходи до моделювання просторово-обмежених металевих систем: DFT та QST. В обох підходах енергія напівобмежених металів подається у вигляді ряду за степенями псевдопотенціалу електрон-іонної взаємодії. Однак QST-підхід, на відміну від DFT-підходу, дозволяє коректно врахувати обмінно-кореляційні ефекти електронної підсистеми.
dc.description.abstractModeling and investigation of thermodynamic characteristics of spatially-finite metallic systems is an essential task of modern nanophysics. We show that the widely used DFT (density functional theory) is less efficient than the QST (quantum-statistical theory) approach.
dc.format.extent178-185
dc.format.pages8
dc.identifier.citationKostrobij P. P. Semi-infinite metallic system: QST versus DFT / P. P. Kostrobij, B. M. Markovych, I. A. Ryzha // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 178–185.
dc.identifier.citationenKostrobij P. P. Semi-infinite metallic system: QST versus DFT / P. P. Kostrobij, B. M. Markovych, I. A. Ryzha // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 178–185.
dc.identifier.doi10.23939/mmc2022.01.178
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60549
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (9), 2022
dc.relation.references[1] Hohenberg P., Kohn W. Inhomogeneous electron gas. Physical Review. 136 (3B), B864–B871 (1964).
dc.relation.references[2] Lang N. D., Kohn W. Theory of metal surfaces: Charge density and surface energy. Physical Review B. 1 (12), 4555–4568 (1970).
dc.relation.references[3] Theory of the Inhomogeneous Electron Gas. Edited by Lundqvist S. and March N. H. Springer, Boston, MA (1983).
dc.relation.references[4] Mattsson A. E., Kohn W. An energy functional for surfaces. The Journal of Chemical Physics. 115 (8), 3441–3443 (2001).
dc.relation.references[5] Eguiluz A. G., Heinrichsmeier M., Fleszar A., Hanke W. First-principles evaluation of the surface barrier for a Kohn–Sham electron at a metal surface. Physical Review Letters. 68 (9), 1359–1362 (1993).
dc.relation.references[6] Fiolhais C., Henriques C., Sarr´ia I., Pitarke J. M. Metallic slabs: Perturbative treatments based on jellium. Progress In Surface Science. 67 (1–8), 285–298 (2001).
dc.relation.references[7] Dobson J. F., Rose J. H. Surface properties of simple metals via inhomogeneous linear electronic response. I. Theory. Journal of Physics C: Solid State Physics. 15 (36), 7429–7456 (1982).
dc.relation.references[8] Eguiluz A. G. Lattice relaxation at an aluminum surface: Self-consistent linear-electronic-response approach. Physical Review B. 35 (11), 5473–5486 (1987).
dc.relation.references[9] Kostrobij P. P., Markovych B. M. Semi-infinite metal: Perturbative treatment based on semi-infinite jellium. Condensed Matter Physics. 11 (4), 641–651 (2008).
dc.relation.references[10] Kostrobij P. P., Markovych B. M. Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy. Physical Review B. 92 (7), 075441 (2015).
dc.relation.references[11] Vavrukh M. V., Kostrobij P. P., Markovych B. M. Basis approach in the theory of multielectron systems. Rastr-7, Lviv (2017), (in Ukrainian).
dc.relation.references[12] Acioli P. H., Ceperley D. M. Diffusion Monte Carlo study of jellium surfaces: Electronic densities and pair correlation functions. Physical Review B. 54 (23), 17199–17207 (1996).
dc.relation.references[13] Vakarchuk I. O. Quantum mechanics. Ivan Franko National University of Lviv, Lviv (2012), (in Ukrainian).
dc.relation.references[14] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E. Methods of quantum field theory in statistical physics. Fizmatgiz, Moscow (1962), (in Russian).
dc.relation.references[15] Mermin N. D. Thermal Properties of the Inhomogeneous Electron Gas. Physical Review. 137 (5A), A1441–A1443 (1965).
dc.relation.references[16] Bogolyubov N. N. Selected works on statistical physics. Moscow University Press, Moscow (1979), (in Russian).
dc.relation.references[17] Kostrobij P. P., Markovych B. M., Polovyi V. Y. Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric–metal–dielectric structures. Mathematical Modeling and Computing. 6 (2), 297–303 (2019).
dc.relation.references[18] Kostrobij P. P., Markovych B. M. Effect of Coulomb interaction on chemical potential of metal film. Philosophical Magazine. 98 (21), 1991–2002 (2018).
dc.relation.referencesen[1] Hohenberg P., Kohn W. Inhomogeneous electron gas. Physical Review. 136 (3B), B864–B871 (1964).
dc.relation.referencesen[2] Lang N. D., Kohn W. Theory of metal surfaces: Charge density and surface energy. Physical Review B. 1 (12), 4555–4568 (1970).
dc.relation.referencesen[3] Theory of the Inhomogeneous Electron Gas. Edited by Lundqvist S. and March N. H. Springer, Boston, MA (1983).
dc.relation.referencesen[4] Mattsson A. E., Kohn W. An energy functional for surfaces. The Journal of Chemical Physics. 115 (8), 3441–3443 (2001).
dc.relation.referencesen[5] Eguiluz A. G., Heinrichsmeier M., Fleszar A., Hanke W. First-principles evaluation of the surface barrier for a Kohn–Sham electron at a metal surface. Physical Review Letters. 68 (9), 1359–1362 (1993).
dc.relation.referencesen[6] Fiolhais C., Henriques C., Sarr´ia I., Pitarke J. M. Metallic slabs: Perturbative treatments based on jellium. Progress In Surface Science. 67 (1–8), 285–298 (2001).
dc.relation.referencesen[7] Dobson J. F., Rose J. H. Surface properties of simple metals via inhomogeneous linear electronic response. I. Theory. Journal of Physics C: Solid State Physics. 15 (36), 7429–7456 (1982).
dc.relation.referencesen[8] Eguiluz A. G. Lattice relaxation at an aluminum surface: Self-consistent linear-electronic-response approach. Physical Review B. 35 (11), 5473–5486 (1987).
dc.relation.referencesen[9] Kostrobij P. P., Markovych B. M. Semi-infinite metal: Perturbative treatment based on semi-infinite jellium. Condensed Matter Physics. 11 (4), 641–651 (2008).
dc.relation.referencesen[10] Kostrobij P. P., Markovych B. M. Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy. Physical Review B. 92 (7), 075441 (2015).
dc.relation.referencesen[11] Vavrukh M. V., Kostrobij P. P., Markovych B. M. Basis approach in the theory of multielectron systems. Rastr-7, Lviv (2017), (in Ukrainian).
dc.relation.referencesen[12] Acioli P. H., Ceperley D. M. Diffusion Monte Carlo study of jellium surfaces: Electronic densities and pair correlation functions. Physical Review B. 54 (23), 17199–17207 (1996).
dc.relation.referencesen[13] Vakarchuk I. O. Quantum mechanics. Ivan Franko National University of Lviv, Lviv (2012), (in Ukrainian).
dc.relation.referencesen[14] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E. Methods of quantum field theory in statistical physics. Fizmatgiz, Moscow (1962), (in Russian).
dc.relation.referencesen[15] Mermin N. D. Thermal Properties of the Inhomogeneous Electron Gas. Physical Review. 137 (5A), A1441–A1443 (1965).
dc.relation.referencesen[16] Bogolyubov N. N. Selected works on statistical physics. Moscow University Press, Moscow (1979), (in Russian).
dc.relation.referencesen[17] Kostrobij P. P., Markovych B. M., Polovyi V. Y. Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric–metal–dielectric structures. Mathematical Modeling and Computing. 6 (2), 297–303 (2019).
dc.relation.referencesen[18] Kostrobij P. P., Markovych B. M. Effect of Coulomb interaction on chemical potential of metal film. Philosophical Magazine. 98 (21), 1991–2002 (2018).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectнапівобмежений метал
dc.subjectтеорія функціоналу густини
dc.subjectбагаточастинкова матриця густини
dc.subjectsemi-infinite metal
dc.subjectdensity functional theory
dc.subjectmany-particle density matrix
dc.titleSemi-infinite metallic system: QST versus DFT
dc.title.alternativeНапівобмежена металева система: QST проти DFT
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v9n1_Kostrobij_P_P-Semi_infinite_metallic_178-185.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v9n1_Kostrobij_P_P-Semi_infinite_metallic_178-185__COVER.png
Size:
390.54 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: