Semi-infinite metallic system: QST versus DFT
dc.citation.epage | 185 | |
dc.citation.issue | 1 | |
dc.citation.spage | 178 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Костробій, П. П. | |
dc.contributor.author | Маркович, Б. М. | |
dc.contributor.author | Рижа, І. | |
dc.contributor.author | Kostrobij, P. P. | |
dc.contributor.author | Markovych, B. M. | |
dc.contributor.author | Ryzha, I. A. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-12-13T09:11:04Z | |
dc.date.available | 2023-12-13T09:11:04Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | Розглянуто два підходи до моделювання просторово-обмежених металевих систем: DFT та QST. В обох підходах енергія напівобмежених металів подається у вигляді ряду за степенями псевдопотенціалу електрон-іонної взаємодії. Однак QST-підхід, на відміну від DFT-підходу, дозволяє коректно врахувати обмінно-кореляційні ефекти електронної підсистеми. | |
dc.description.abstract | Modeling and investigation of thermodynamic characteristics of spatially-finite metallic systems is an essential task of modern nanophysics. We show that the widely used DFT (density functional theory) is less efficient than the QST (quantum-statistical theory) approach. | |
dc.format.extent | 178-185 | |
dc.format.pages | 8 | |
dc.identifier.citation | Kostrobij P. P. Semi-infinite metallic system: QST versus DFT / P. P. Kostrobij, B. M. Markovych, I. A. Ryzha // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 178–185. | |
dc.identifier.citationen | Kostrobij P. P. Semi-infinite metallic system: QST versus DFT / P. P. Kostrobij, B. M. Markovych, I. A. Ryzha // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 178–185. | |
dc.identifier.doi | 10.23939/mmc2022.01.178 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60549 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (9), 2022 | |
dc.relation.references | [1] Hohenberg P., Kohn W. Inhomogeneous electron gas. Physical Review. 136 (3B), B864–B871 (1964). | |
dc.relation.references | [2] Lang N. D., Kohn W. Theory of metal surfaces: Charge density and surface energy. Physical Review B. 1 (12), 4555–4568 (1970). | |
dc.relation.references | [3] Theory of the Inhomogeneous Electron Gas. Edited by Lundqvist S. and March N. H. Springer, Boston, MA (1983). | |
dc.relation.references | [4] Mattsson A. E., Kohn W. An energy functional for surfaces. The Journal of Chemical Physics. 115 (8), 3441–3443 (2001). | |
dc.relation.references | [5] Eguiluz A. G., Heinrichsmeier M., Fleszar A., Hanke W. First-principles evaluation of the surface barrier for a Kohn–Sham electron at a metal surface. Physical Review Letters. 68 (9), 1359–1362 (1993). | |
dc.relation.references | [6] Fiolhais C., Henriques C., Sarr´ia I., Pitarke J. M. Metallic slabs: Perturbative treatments based on jellium. Progress In Surface Science. 67 (1–8), 285–298 (2001). | |
dc.relation.references | [7] Dobson J. F., Rose J. H. Surface properties of simple metals via inhomogeneous linear electronic response. I. Theory. Journal of Physics C: Solid State Physics. 15 (36), 7429–7456 (1982). | |
dc.relation.references | [8] Eguiluz A. G. Lattice relaxation at an aluminum surface: Self-consistent linear-electronic-response approach. Physical Review B. 35 (11), 5473–5486 (1987). | |
dc.relation.references | [9] Kostrobij P. P., Markovych B. M. Semi-infinite metal: Perturbative treatment based on semi-infinite jellium. Condensed Matter Physics. 11 (4), 641–651 (2008). | |
dc.relation.references | [10] Kostrobij P. P., Markovych B. M. Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy. Physical Review B. 92 (7), 075441 (2015). | |
dc.relation.references | [11] Vavrukh M. V., Kostrobij P. P., Markovych B. M. Basis approach in the theory of multielectron systems. Rastr-7, Lviv (2017), (in Ukrainian). | |
dc.relation.references | [12] Acioli P. H., Ceperley D. M. Diffusion Monte Carlo study of jellium surfaces: Electronic densities and pair correlation functions. Physical Review B. 54 (23), 17199–17207 (1996). | |
dc.relation.references | [13] Vakarchuk I. O. Quantum mechanics. Ivan Franko National University of Lviv, Lviv (2012), (in Ukrainian). | |
dc.relation.references | [14] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E. Methods of quantum field theory in statistical physics. Fizmatgiz, Moscow (1962), (in Russian). | |
dc.relation.references | [15] Mermin N. D. Thermal Properties of the Inhomogeneous Electron Gas. Physical Review. 137 (5A), A1441–A1443 (1965). | |
dc.relation.references | [16] Bogolyubov N. N. Selected works on statistical physics. Moscow University Press, Moscow (1979), (in Russian). | |
dc.relation.references | [17] Kostrobij P. P., Markovych B. M., Polovyi V. Y. Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric–metal–dielectric structures. Mathematical Modeling and Computing. 6 (2), 297–303 (2019). | |
dc.relation.references | [18] Kostrobij P. P., Markovych B. M. Effect of Coulomb interaction on chemical potential of metal film. Philosophical Magazine. 98 (21), 1991–2002 (2018). | |
dc.relation.referencesen | [1] Hohenberg P., Kohn W. Inhomogeneous electron gas. Physical Review. 136 (3B), B864–B871 (1964). | |
dc.relation.referencesen | [2] Lang N. D., Kohn W. Theory of metal surfaces: Charge density and surface energy. Physical Review B. 1 (12), 4555–4568 (1970). | |
dc.relation.referencesen | [3] Theory of the Inhomogeneous Electron Gas. Edited by Lundqvist S. and March N. H. Springer, Boston, MA (1983). | |
dc.relation.referencesen | [4] Mattsson A. E., Kohn W. An energy functional for surfaces. The Journal of Chemical Physics. 115 (8), 3441–3443 (2001). | |
dc.relation.referencesen | [5] Eguiluz A. G., Heinrichsmeier M., Fleszar A., Hanke W. First-principles evaluation of the surface barrier for a Kohn–Sham electron at a metal surface. Physical Review Letters. 68 (9), 1359–1362 (1993). | |
dc.relation.referencesen | [6] Fiolhais C., Henriques C., Sarr´ia I., Pitarke J. M. Metallic slabs: Perturbative treatments based on jellium. Progress In Surface Science. 67 (1–8), 285–298 (2001). | |
dc.relation.referencesen | [7] Dobson J. F., Rose J. H. Surface properties of simple metals via inhomogeneous linear electronic response. I. Theory. Journal of Physics C: Solid State Physics. 15 (36), 7429–7456 (1982). | |
dc.relation.referencesen | [8] Eguiluz A. G. Lattice relaxation at an aluminum surface: Self-consistent linear-electronic-response approach. Physical Review B. 35 (11), 5473–5486 (1987). | |
dc.relation.referencesen | [9] Kostrobij P. P., Markovych B. M. Semi-infinite metal: Perturbative treatment based on semi-infinite jellium. Condensed Matter Physics. 11 (4), 641–651 (2008). | |
dc.relation.referencesen | [10] Kostrobij P. P., Markovych B. M. Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy. Physical Review B. 92 (7), 075441 (2015). | |
dc.relation.referencesen | [11] Vavrukh M. V., Kostrobij P. P., Markovych B. M. Basis approach in the theory of multielectron systems. Rastr-7, Lviv (2017), (in Ukrainian). | |
dc.relation.referencesen | [12] Acioli P. H., Ceperley D. M. Diffusion Monte Carlo study of jellium surfaces: Electronic densities and pair correlation functions. Physical Review B. 54 (23), 17199–17207 (1996). | |
dc.relation.referencesen | [13] Vakarchuk I. O. Quantum mechanics. Ivan Franko National University of Lviv, Lviv (2012), (in Ukrainian). | |
dc.relation.referencesen | [14] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E. Methods of quantum field theory in statistical physics. Fizmatgiz, Moscow (1962), (in Russian). | |
dc.relation.referencesen | [15] Mermin N. D. Thermal Properties of the Inhomogeneous Electron Gas. Physical Review. 137 (5A), A1441–A1443 (1965). | |
dc.relation.referencesen | [16] Bogolyubov N. N. Selected works on statistical physics. Moscow University Press, Moscow (1979), (in Russian). | |
dc.relation.referencesen | [17] Kostrobij P. P., Markovych B. M., Polovyi V. Y. Influence of the electroneutrality of a metal layer on the plasmon spectrum in dielectric–metal–dielectric structures. Mathematical Modeling and Computing. 6 (2), 297–303 (2019). | |
dc.relation.referencesen | [18] Kostrobij P. P., Markovych B. M. Effect of Coulomb interaction on chemical potential of metal film. Philosophical Magazine. 98 (21), 1991–2002 (2018). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | напівобмежений метал | |
dc.subject | теорія функціоналу густини | |
dc.subject | багаточастинкова матриця густини | |
dc.subject | semi-infinite metal | |
dc.subject | density functional theory | |
dc.subject | many-particle density matrix | |
dc.title | Semi-infinite metallic system: QST versus DFT | |
dc.title.alternative | Напівобмежена металева система: QST проти DFT | |
dc.type | Article |
Files
License bundle
1 - 1 of 1