Mathematical modeling of an air split-conditioner heat pump operation for investigation its exergetic efficiency

dc.citation.epage178
dc.citation.issue1
dc.citation.spage169
dc.contributor.affiliationНацiональний унiверситет “Львiвська полiтехнiка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЛабай, В. Й.
dc.contributor.authorЯрослав, В. Ю.
dc.contributor.authorДовбуш, О. М.
dc.contributor.authorЦізда, А. Є.
dc.contributor.authorLabay, V. Yo.
dc.contributor.authorYaroslav, V. Yu.
dc.contributor.authorDovbush, O. M.
dc.contributor.authorYe, Tsizda A.
dc.date.accessioned2023-03-06T12:28:17Z
dc.date.available2023-03-06T12:28:17Z
dc.date.created2020-01-01
dc.date.issued2020-01-01
dc.description.abstractУ сучасних технологiях, пов’язаних з перетворенням енергiї, а саме в теплових помпах split-кондицiонерiв (“повiтря–повiтря”), важливе мiсце займають апарати та процеси, об’єктивна оцiнка ступеня їх енергетичної досконалостi може бути визначена лише на основi аналiзу їх ексергетичної ефективностi. Це дозволило обґрунтувати актуальнiсть дослiдницького завдання, що пов’язано з недостатньою iнформацiєю щодо ексергетичної ефективностi використання теплових помп split-кондицiонерiв та їх елементiв. Розроблено авторську iнновацiйну математичну модель для аналiзу роботи одноступеневих фреонових теплових помп, якi використовуються у splitкондицiонерах, за ексергетичним методом. В статтi проаналiзовано ексергетичний коефiцiєнт корисної дiї (ККД) та втрати ексергiї в окремих елементах теплових помп split-кондицiонерiв на прикладi кондицiонерiв з номiнальною теплопродуктивнiстю 2500, 2840, 3580, 5620, 6400 Вт фiрми “Daikin” за стандартних зовнiшнiх температурних умов на холодоагентi R410A. Було визначено, що за ексергетичним ККД тепловi помпи split-кондицiонерiв, що мають вищу теплопродуктивнiсть, володiють нижчим ексергетичним ККД. На нашу думку це пов’язано з некоректним прийняттям витрат повiтря на випарнику i конденсаторi, якi не вiдповiдають тепловим балансам цих апаратiв та однаковому внутрiшньому температурному режимовi для рiзних теплопродуктивностей теплових помп split-кондицiонерiв. Для прикладу наведена дiаграма Грассмана теплової помпи з теплопродуктивнiстю 2500 Вт. Втрати ексергiї, встановленi в усiх елементах теплових помп split-кондицiонерiв, вказують на необхiднiсть удосконалення обладнання split-кондицiонера, щоб зменшити втрати ексергiї в них та загалом збiльшити його ексергетичний ККД.
dc.description.abstractIn the modern technologies related to energy transformation, namely in the field of heat pumps of air split-conditioners (“air-to-air”), an important place is occupied by apparatuses and processes, which energy perfection can be objectively evaluated only on the basis of analysis of their exergy efficiency. This allowed substantiating the actuality of the research task due to insufficient information on the exergy efficiency of the use of heat pumps of air split-conditioners and their elements. The author’s innovation mathematical model for the analysis of the operation of one-step freon heat pumps, which are used in air splitconditioners, according to the exergetic method, is developed. In this article analyzes the exergetic output-input ratio (OIR) and the losses of exergy in the separate elements of heat pumps of air split-conditioners on the example heat pumps of air split-conditioners with a nominal heating capacity of 2500, 2840, 3580, 5620, 6400W by “Daikin” firm in the standard external temperature conditions on the refrigerant R410A are obtained on this model. It has been determined that, by exergy efficiency, heat pumps of air splitconditioners with higher heat capacity have lower exergy efficiency. In our opinion, this is due to the incorrect acceptance of air flow rates on the evaporator and condenser, which do not correspond to the heat balances of these apparatuses and the same internal temperature regime for different heat capacity heat pumps of air split-conditioners. An example is the Grassman’s diagram of the heat pump of air split-conditioner with the heat capacity of 2500W. The losses of exergy having been established in all elements of heat pumps of air split-conditioners indicate that the air split-conditioner parts should be improved to reduce the losses of exergy in them and to increase its exergetic OIR in general.
dc.format.extent169-178
dc.format.pages10
dc.identifier.citationMathematical modeling of an air split-conditioner heat pump operation for investigation its exergetic efficiency / Labay V. Yo., Yaroslav V. Yu., Dovbush O. M., Tsizda A. Ye // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 169–178.
dc.identifier.citationenLabay V. Yo., Yaroslav V. Yu., Dovbush O. M., Ye T. A. (2020) Mathematical modeling of an air split-conditioner heat pump operation for investigation its exergetic efficiency. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 169-178.
dc.identifier.doiDOI: 10.23939/mmc2020.01.169
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57511
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (7), 2020
dc.relation.references[1] Energy Strategy of Ukraine until 2030, http://www.ukrenergo.energy.gov.ua (in Ukrainian).
dc.relation.references[2] Heat Pump, Types and Applications of Heat Pumps, http://www.ecosvit.net/ua/teplovij-nasos-vidi-ta zastosuvannya (in Ukrainian).
dc.relation.references[3] Heat pumps, http://www.npblog.com.ua/index.php/hi-tech/teplovi-nasosi.html (in Ukrainian).
dc.relation.references[4] Bezrodnyi M. N., Dranik T. V. Thermodynamic Efficiency of Heat Pump Application for Providing Comfortable Conditions in Indoor Swimming Pools. Eastern European Journal of Enterprise Technologies. 3(8), 25–30 (2013).
dc.relation.references[5] Matsevityi Yu. M., Chirkin N. B., Bogdanovich A. S., Klepanda A. S. Introduction of Heat Pumping Technologies. Ecotechnology and Resource Saving. 3, 4–10 (2008), (in Russian).
dc.relation.references[6] Zalewski P. K. Pompy ciep la. Podstawy teoretyczne i przykiady zastosowania. Krak´ow (1995), (in Polish).
dc.relation.references[7] Szargut J., Petela R. Exergy. Moscow, Energy (1968), (in Russian).
dc.relation.references[8] Sokolov E. Y., Brodyansky V. M. Energy Basis of Transformation of Heat and Cooling Processes. Moscow, Energoizdat (1981), (in Russian).
dc.relation.references[9] Morozyuk T. V. Theory of Refrigeration Machines and Heat Pumps. Odessa, Studio “Negotsiant” (2006), (in Russian).
dc.relation.references[10] Silvio de Oliveira Jr. Exergy. Production, Cost and Renewability. Springer (2013).
dc.relation.references[11] Sazhin B. S., Bulekov A. P., Sazhin B. S. Exergy Analysis of Work of Industrial Plants. Moscow (2000), (in Russian).
dc.relation.references[12] Bejan A. Advanced Engineering Thermodynamics. New York, John Wiley & Sons (1988).
dc.relation.references[13] Bejan A., Tsatsaronis G., Moran M. Thermal Design and Optimization. New York, J. Wiley (1996).
dc.relation.references[14] Morosuk T., Nikulshin R., Morosuk L. Entropy-Cycle Method for Analysis of Refrigeration Machine and Heat Pump Cycles. Thermal Science. 10 (1), 111–124 (2006).
dc.relation.references[15] Tsatsaronis J. The Interaction of Thermodynamics and Economy to Minimize Cost of Energy Conversion Systems. Odessa, Studio “Negotsiant” (2002), (in Russian).
dc.relation.references[16] Labay V., Dovbush O., Yaroslav V., Klymenko H. Mathematical Modeling of a Split-conditioner Operation for Evaluation of Exergy Efficiency of the R600A Refrigerant Application. Mathematical Modeling and Computing. 5 (2), 169–177 (2018).
dc.relation.references[17] Labay V. Yo., Khanyk Ya. M. Energy Saving Ratio Between the Air Flows at the Evaporator and Condenser Air Split-conditioners. Refrigeration Engineering and Technology. 6 (116), 28–31 (2008), (in Ukrainian).
dc.relation.references[18] Labay V. Yo., Mysak Yo. S. Adduction of Work of Refrigeration’s Machines of Air Split-conditioners to the Identical Internal Temperature Condition. Refrigeration Engineering and Technology. 4 (126), 19–22(2010), (in Ukrainian).
dc.relation.references[19] Jakobsen A., Rassmussen B.-D., Skovrup M.-J., Andersen S.-E. CoolPack – a collection of simulation tools for refrigeration systemes. Tutorial. Version 1.46. Department of Energy Engineering Technical University of Denmark (2001).
dc.relation.references[20] Daikin Catalog Split (2017).
dc.relation.referencesen[1] Energy Strategy of Ukraine until 2030, http://www.ukrenergo.energy.gov.ua (in Ukrainian).
dc.relation.referencesen[2] Heat Pump, Types and Applications of Heat Pumps, http://www.ecosvit.net/ua/teplovij-nasos-vidi-ta zastosuvannya (in Ukrainian).
dc.relation.referencesen[3] Heat pumps, http://www.npblog.com.ua/index.php/hi-tech/teplovi-nasosi.html (in Ukrainian).
dc.relation.referencesen[4] Bezrodnyi M. N., Dranik T. V. Thermodynamic Efficiency of Heat Pump Application for Providing Comfortable Conditions in Indoor Swimming Pools. Eastern European Journal of Enterprise Technologies. 3(8), 25–30 (2013).
dc.relation.referencesen[5] Matsevityi Yu. M., Chirkin N. B., Bogdanovich A. S., Klepanda A. S. Introduction of Heat Pumping Technologies. Ecotechnology and Resource Saving. 3, 4–10 (2008), (in Russian).
dc.relation.referencesen[6] Zalewski P. K. Pompy ciep la. Podstawy teoretyczne i przykiady zastosowania. Krak´ow (1995), (in Polish).
dc.relation.referencesen[7] Szargut J., Petela R. Exergy. Moscow, Energy (1968), (in Russian).
dc.relation.referencesen[8] Sokolov E. Y., Brodyansky V. M. Energy Basis of Transformation of Heat and Cooling Processes. Moscow, Energoizdat (1981), (in Russian).
dc.relation.referencesen[9] Morozyuk T. V. Theory of Refrigeration Machines and Heat Pumps. Odessa, Studio "Negotsiant" (2006), (in Russian).
dc.relation.referencesen[10] Silvio de Oliveira Jr. Exergy. Production, Cost and Renewability. Springer (2013).
dc.relation.referencesen[11] Sazhin B. S., Bulekov A. P., Sazhin B. S. Exergy Analysis of Work of Industrial Plants. Moscow (2000), (in Russian).
dc.relation.referencesen[12] Bejan A. Advanced Engineering Thermodynamics. New York, John Wiley & Sons (1988).
dc.relation.referencesen[13] Bejan A., Tsatsaronis G., Moran M. Thermal Design and Optimization. New York, J. Wiley (1996).
dc.relation.referencesen[14] Morosuk T., Nikulshin R., Morosuk L. Entropy-Cycle Method for Analysis of Refrigeration Machine and Heat Pump Cycles. Thermal Science. 10 (1), 111–124 (2006).
dc.relation.referencesen[15] Tsatsaronis J. The Interaction of Thermodynamics and Economy to Minimize Cost of Energy Conversion Systems. Odessa, Studio "Negotsiant" (2002), (in Russian).
dc.relation.referencesen[16] Labay V., Dovbush O., Yaroslav V., Klymenko H. Mathematical Modeling of a Split-conditioner Operation for Evaluation of Exergy Efficiency of the R600A Refrigerant Application. Mathematical Modeling and Computing. 5 (2), 169–177 (2018).
dc.relation.referencesen[17] Labay V. Yo., Khanyk Ya. M. Energy Saving Ratio Between the Air Flows at the Evaporator and Condenser Air Split-conditioners. Refrigeration Engineering and Technology. 6 (116), 28–31 (2008), (in Ukrainian).
dc.relation.referencesen[18] Labay V. Yo., Mysak Yo. S. Adduction of Work of Refrigeration’s Machines of Air Split-conditioners to the Identical Internal Temperature Condition. Refrigeration Engineering and Technology. 4 (126), 19–22(2010), (in Ukrainian).
dc.relation.referencesen[19] Jakobsen A., Rassmussen B.-D., Skovrup M.-J., Andersen S.-E. CoolPack – a collection of simulation tools for refrigeration systemes. Tutorial. Version 1.46. Department of Energy Engineering Technical University of Denmark (2001).
dc.relation.referencesen[20] Daikin Catalog Split (2017).
dc.relation.urihttp://www.ukrenergo.energy.gov.ua
dc.relation.urihttp://www.ecosvit.net/ua/teplovij-nasos-vidi-ta
dc.relation.urihttp://www.npblog.com.ua/index.php/hi-tech/teplovi-nasosi.html
dc.rights.holder©2020 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectтеплова помпа split-кондицiонера
dc.subjectексергетичний баланс
dc.subjectексергетичний ККД
dc.subjectвтрати ексергiї
dc.subjectheat pump of air split-conditioner
dc.subjectexergy balance
dc.subjectexergy efficiency
dc.subjectexergy losses
dc.subject.udc80A10
dc.subject.udc80A20
dc.titleMathematical modeling of an air split-conditioner heat pump operation for investigation its exergetic efficiency
dc.title.alternativeМатематичне моделювання роботи теплової помпи спліт-кондиціонера для дослідження її ексергетичної ефективності
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2020v7n1_Labay_V_Yo-Mathematical_modeling_169-178.pdf
Size:
1018.91 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: