Пiдсумовування функцiональних рядiв за власними елементами гiбридного диференцiального оператора Лежандра–Бесселя–Ейлера на сегментi [0, R3 ] полярної осi

dc.contributor.authorТарновецька, О. Ю.
dc.date.accessioned2012-07-12T11:27:07Z
dc.date.available2012-07-12T11:27:07Z
dc.date.issued2010
dc.description.abstractЗапропоновано метод пiдсумовування полiпараметричної сiм’ї функцiональних рядiв за власними елементами гiбридного диференцiального оператора Лежандра–Бесселя–Ейлера. Використано порiвняння розв’язку крайової задачi на сегментi полярної осi з двома точками спряження для сепаратної системи з диференцiальних рiвнянь Лежандра, Бесселя, Ейлера, побудованого, з одного боку, методом функцiй Кошi, а з iншого – методом скiнченного гiбридного iнтегрального перетворення Лежандра–Бесселя–Ейлера. Предложен метод суммирования полипараметрического семейства функциональных рядов по собственным элементам гибридного дифференциального оператора Лежандра–Бесселя–Эйлера. Использовано сравнение решения граничной задачи на сегменте полярной оси с двумя точками сопряжения для сепаратной системы из дифференциальных уравнений Лежандра, Бесселя, Эйлера, построенного, с одной стороны, методом функций Коши, а с другой – методом конечного гибридного интегрального преобразования Лежандра–Бесселя–Эйлера. The method of adding – up of polyparametric family of functional series by eigen elements of hybrid differential operator Legendre–Bessel–Euler has been suggested. We have used comparison of the solution of marginal problem on the segment of a polar axis with two points of junction for separate system of differential equations of Legendre, Bessel, Euler, built on one hand by the method of Cauchy functions and, on the other hand by Legendre–Bessel–Euler’s method of final hybrid integral transformation.uk_UA
dc.identifier.citationТарновецька О. Ю. Пiдсумовування функцiональних рядiв за власними елементами гiбридного диференцiального оператора Лежандра–Бесселя–Ейлера на сегментi [0, R3] полярної осi / О. Ю. Тарновецька // Вісник Національного університету «Львівська політехніка». – 2010. – № 687 : Фізико-математичні науки. – С. 73–81. – Бібліографія: 7 назв.uk_UA
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/13522
dc.language.isouauk_UA
dc.publisherВидавництво Львівської політехнікиuk_UA
dc.subjectфункцiональнi рядиuk_UA
dc.subjectфункцiї Кошiuk_UA
dc.subjectголовнi розв’язкиuk_UA
dc.subjectгiбридне iнтегральне перетворенняuk_UA
dc.subjectосновна тотожнiстьuk_UA
dc.subjectумова однозначної розв’язностiuk_UA
dc.subjectлогiчна схемаuk_UA
dc.subjectфункциональные рядыuk_UA
dc.subjectфункции Кошиuk_UA
dc.subjectглавные решенияuk_UA
dc.subjectгибридное интегральное преобразованиеuk_UA
dc.subjectосновное тождествоuk_UA
dc.subjectусловие однозначной разрешимостиuk_UA
dc.subjectлогическая схемаuk_UA
dc.subjectfunctional seriesuk_UA
dc.subjectCauchy functionsuk_UA
dc.subjecthybrid integral transformuk_UA
dc.subjectbasicuk_UA
dc.subjectidentify condition of uniqueness solutionuk_UA
dc.subjectlogical schemeuk_UA
dc.titleПiдсумовування функцiональних рядiв за власними елементами гiбридного диференцiального оператора Лежандра–Бесселя–Ейлера на сегментi [0, R3 ] полярної осiuk_UA
dc.title.alternativeСуммирование функциональных рядов по собственным элементам гибридного дифференциального оператора Лежандра–Бесселя–Ейлера на сегменте [0; R3 ] полярной осиuk_UA
dc.title.alternativeSummation of functional series by eigen elements of the hybrid differential operator of Legendre–Bessel–Euler on the segment [0, R3] of the polar axisuk_UA
dc.typeArticleuk_UA

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9_73-81_Vis687maket.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.06 KB
Format:
Item-specific license agreed upon to submission
Description: