Modeling and Control of an Electromechanical System with a Permanent Magnet Generator and a Voltage Source Converter

dc.citation.epage20
dc.citation.issue2
dc.citation.spage13
dc.contributor.affiliationThe Institute of Electrodynamics of the National Academy of Sciences of Ukraine
dc.contributor.authorМазуренко, Леонід
dc.contributor.authorГребєніков, Віктор
dc.contributor.authorДжура, Олександр
dc.contributor.authorШихненко, Максим
dc.contributor.authorMazurenko, Leonid
dc.contributor.authorGrebenikov, Viktor
dc.contributor.authorDzhura, Oleksandr
dc.contributor.authorShykhnenko, Maksym
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2021-03-29T10:31:58Z
dc.date.available2021-03-29T10:31:58Z
dc.date.created2020-02-24
dc.date.issued2020-02-24
dc.description.abstractНа основі математичних моделей структурних елементів розроблено імітаційні моделі для аналізу характеристик і перехідних процесів електромеханічних систем побудованих на основі електричного генератора на постійних магнітах (ГПМ) змінної частоти обертання і напівпровідникового регулятора (НР) напруги, що виконаний за схемою трифазного автономного інвертора напруги. На підключене до кола постійного струму кероване резистивне навантаження покладено функцію стабілізації напруги в колі постійного струму системи для моделювання режиму генерації активної потужності в мережу через мережевий інвертор. Розглянуто два варіанти реалізації алгоритму відпрацювання оптимальної траєкторії руху в координатах аеродинамічна потужність – частота обертання приводної вітротурбіни ГПМ, які повинні забезпечувати максимізацію відбору потужності від турбіни. З використанням розроблених імітаційних моделей досліджено електромеханічні процеси в системі ГПМ-НР при змінній потужності приводної турбіни за векторного керування електромагнітним моментом генератора. За результатами чисельних досліджень проведено аналіз електромеханічних процесів в системі і порівняння ефективності застосування запропонованих алгоритмів.
dc.description.abstractIn the paper simulation dynamic models for the analysis of characteristics and transients of electromechanical system using a permanent magnet electric generator (PMG) connected to a variable speed fixed pitch wind turbine (WT) and a voltage source converter (VSC) mathematical models are developed. The system supplies a direct current (dc) resistive load through a controlled switch. The objective of the controlled resistive load connected to the VSC dc circuit of the system is to perform the dc output voltage stabilization for simulating the mode of generating the active power into a grid via a grid invertor. Two algorithm structures of realization of tracking the optimal WT motion trajectory in the coordinates “WT aerodynamical power – rotary speed” have been considered. The tracking algorithms function is to provide the maximization of power extraction from wind flow by WT. Electromechanical processes in the PMG – VSC system for both tracking algorithms have been investigated using developed dynamic simulation models and vector control technique of electromagnetic torque of the generator at variable WT mechanical power. The results of numerical investigations of the electromagnetic processes in the system have been analized. The efficiencies of the proposed control algorithms applied to the VSC in the considered electromechanical system have been compared and discussed.
dc.format.extent13-20
dc.format.pages8
dc.identifier.citationModeling and Control of an Electromechanical System with a Permanent Magnet Generator and a Voltage Source Converter / Leonid Mazurenko, Viktor Grebenikov, Oleksandr Dzhura, Maksym Shykhnenko // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 10. — No 2. — P. 13–20.
dc.identifier.citationenModeling and Control of an Electromechanical System with a Permanent Magnet Generator and a Voltage Source Converter / Leonid Mazurenko, Viktor Grebenikov, Oleksandr Dzhura, Maksym Shykhnenko // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 10. — No 2. — P. 13–20.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56264
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Problems of Electrical Engineering, 2 (10), 2020
dc.relation.references[1] A. Rolan, A. Luna, G. Vazquez, D. Aguilar and G. Azevedo, “Modeling of a variable speed wind turbine with a Permanent Magnet Synchronous Generator”, 2009 IEEE International Symposium on Industrial Electronics, pp. 734–739, Seoul, South Korea, 2009. doi: 10.1109/ISIE.2009.5218120.
dc.relation.references[2] W. Qiao, L. Qu and R. G. Harley, “Control of IPM Synchronous Generator for Maximum Wind Power Generation Considering Magnetic Saturation”, in IEEE Transactions on Industry Applications, vol. 45, no. 3, pp. 1095–1105, May-june 2009. doi: 10.1109/TIA.2009.2018914.
dc.relation.references[3] V. V. Grebenikov and R. V. Gamaliia, “Comparative Analysis of Two Types of Generators with Permanent Magnets for Wind Turbine”, 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, September 23–25, pp. 126–129, Kremenchuk, Ukraine, 2019. doi: 10.1109/MEES.2019.8896375.
dc.relation.references[4] L. I. Mazurenko, O. V. Dzhura, M. V. Kramar, and M. O. Shykhnenko, “Wind energy conversion system with induction generators connected to a single static compensator”, 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, September 23–25, pp. 258–261, Kremenchuk, Ukraine, 2019. doi: 10.1109/ MEES.2019.8896405
dc.relation.references[5] A. Hemeida, W. A. Farag, and O. A. Mahgoub, “Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines”, World Academy of Science, Engineering and Technology, pp. 1269–1275, At Venice, Italy, 2011.
dc.relation.references[6] Huang, Nantao, “Simulation of Power Control of a Wind Turbine Permanent Magnet Synchronous Generator System”, http://epublications.marquette.edu/theses_open/215, 2013.
dc.relation.references[7] L. I. Mazurenko and O. V. Dzhura, “The mathematical model of a stand-alone power generating complex containing two asynchronous generators and a single semiconductor converter for excitation”, Pratsi Instytutu electrodynamiky Natsionalnoi akademii nauk Ukrainy, no. 44, pp. 69–78, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2016. (Ukrainian)
dc.relation.references[8] L.I. Mazurenko and O. V. Dzhura, “Mathematical model and control algorithm of an unregulated wind turbine and IEIG-based isolated energy system”, Electromechanical and energy saving systems, no. 3/2018(43), pp. 24–30, Kremenchuk, Ukraine: Kremenchuk National University, 2018. doi: 10.30929/2072-2052.2018.3.43.24-30. (Ukrainian
dc.relation.referencesen[1] A. Rolan, A. Luna, G. Vazquez, D. Aguilar and G. Azevedo, "Modeling of a variable speed wind turbine with a Permanent Magnet Synchronous Generator", 2009 IEEE International Symposium on Industrial Electronics, pp. 734–739, Seoul, South Korea, 2009. doi: 10.1109/ISIE.2009.5218120.
dc.relation.referencesen[2] W. Qiao, L. Qu and R. G. Harley, "Control of IPM Synchronous Generator for Maximum Wind Power Generation Considering Magnetic Saturation", in IEEE Transactions on Industry Applications, vol. 45, no. 3, pp. 1095–1105, May-june 2009. doi: 10.1109/TIA.2009.2018914.
dc.relation.referencesen[3] V. V. Grebenikov and R. V. Gamaliia, "Comparative Analysis of Two Types of Generators with Permanent Magnets for Wind Turbine", 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, September 23–25, pp. 126–129, Kremenchuk, Ukraine, 2019. doi: 10.1109/MEES.2019.8896375.
dc.relation.referencesen[4] L. I. Mazurenko, O. V. Dzhura, M. V. Kramar, and M. O. Shykhnenko, "Wind energy conversion system with induction generators connected to a single static compensator", 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk Mykhailo Ostrohradskyi National University, September 23–25, pp. 258–261, Kremenchuk, Ukraine, 2019. doi: 10.1109/ MEES.2019.8896405
dc.relation.referencesen[5] A. Hemeida, W. A. Farag, and O. A. Mahgoub, "Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines", World Academy of Science, Engineering and Technology, pp. 1269–1275, At Venice, Italy, 2011.
dc.relation.referencesen[6] Huang, Nantao, "Simulation of Power Control of a Wind Turbine Permanent Magnet Synchronous Generator System", http://epublications.marquette.edu/theses_open/215, 2013.
dc.relation.referencesen[7] L. I. Mazurenko and O. V. Dzhura, "The mathematical model of a stand-alone power generating complex containing two asynchronous generators and a single semiconductor converter for excitation", Pratsi Instytutu electrodynamiky Natsionalnoi akademii nauk Ukrainy, no. 44, pp. 69–78, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2016. (Ukrainian)
dc.relation.referencesen[8] L.I. Mazurenko and O. V. Dzhura, "Mathematical model and control algorithm of an unregulated wind turbine and IEIG-based isolated energy system", Electromechanical and energy saving systems, no. 3/2018(43), pp. 24–30, Kremenchuk, Ukraine: Kremenchuk National University, 2018. doi: 10.30929/2072-2052.2018.3.43.24-30. (Ukrainian
dc.relation.urihttp://epublications.marquette.edu/theses_open/215
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectpermanent magnet generator
dc.subjectvoltage source converter
dc.subjectwind turbine
dc.subjectMPPT algorithm
dc.subjectsimulation
dc.titleModeling and Control of an Electromechanical System with a Permanent Magnet Generator and a Voltage Source Converter
dc.title.alternativeМатематичне моделювання і алгоритми керування електромеханічної системи з генератором на постійних магнітах і напівпровідниковим регулятором напруги
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v10n2_Mazurenko_L-Modeling_and_Control_of_13-20.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v10n2_Mazurenko_L-Modeling_and_Control_of_13-20__COVER.png
Size:
551.33 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Plain Text
Description: