A modified adaptive large neighbourhood search for a vehicle routing problem with flexible time windows

dc.citation.epage725
dc.citation.issue4
dc.citation.spage716
dc.contributor.affiliationУніверситет Султана Мулая Слімана
dc.contributor.affiliationUniversity Sultan Moulay Slimane
dc.contributor.authorЛабдіад, Ф.
dc.contributor.authorНасрі, М.
dc.contributor.authorХафіді, І.
dc.contributor.authorХалфі, Х.
dc.contributor.authorLabdiad, F.
dc.contributor.authorNasri, M.
dc.contributor.authorHafidi, I.
dc.contributor.authorKhalfi, H.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-11-01T07:49:23Z
dc.date.available2023-11-01T07:49:23Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractЗадачі з маршрутизацією транспортних засобів широко доступні в сучасних застосунках. У цій статті розв’язано конкретний варіант цієї задачі, який в літературі називається задачею маршрутизації транспортних засобів з гнучкими тимчасовими вікнами (VRPFlextW), коли розв’язок має задовольняти декілька додаткових обмежень, таких як врахування подорожі, сервісу та часу очікування з обмеженнями часових вікон. Запропоновано дві модифіковані версії багатоцільового адаптивного пошуку великого околу (MOALNS), описано підходи MOALNS та його компоненти, проведено обчислювальне порівняння між версіями MOALNS та Optimiser Colony (ACO) для деяких випадків VRPFlexTW.
dc.description.abstractVehicle routing problems are widely available in real world application. In this paper, we tackle the resolution of a specific variant of the problem called in the literature vehicle routing problem with flexible time windows (VRPFlexTW), when the solution has to obey several other constraints, such as the consideration of travel, service, and waiting time together with time-window restrictions. There are proposed two modified versions of the Multi-objective Adaptive Large Neighbourhood Search (MOALNS). The MOALNS approach and its different components are described. Also it is listed a computational comparison between the MOALNS versions and the Ant colony optimiser (ACO) on a few instances of the VRPFlexTW.
dc.format.extent716-725
dc.format.pages10
dc.identifier.citationA modified adaptive large neighbourhood search for a vehicle routing problem with flexible time windows / F. Labdiad, M. Nasri, I. Hafidi, H. Khalfi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 716–725.
dc.identifier.citationenA modified adaptive large neighbourhood search for a vehicle routing problem with flexible time windows / F. Labdiad, M. Nasri, I. Hafidi, H. Khalfi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 716–725.
dc.identifier.doi10.23939/mmc2021.04.716
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60436
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 4 (8), 2021
dc.relation.references[1] Dhaenens C., Espinouse M. L., Penz B. Probl`emes combinatoires classiques In Recherche op´erationnelle et r´eseaux: m´ethodes d’analyse spatiale. Herm`es Science Publications (2002).
dc.relation.references[2] Dantzig G., Fulkerson R., Johnson S. Solution of a large-scale travelling salesman problem. Journal of the Operations Research Society of America. 2 (4), 393–410 (1954).
dc.relation.references[3] Baldacci R., Mingozzi A., Roberti R. Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. European Journal of Operational Research. 218 (1), 1–6 (2012).
dc.relation.references[4] Balseiro S. R., Loiseau I., Ramonet J. An ant colony algorithm hybridized with insertion heuristics for the timedependent vehicle routing problem with time windows. Computers & Operations Research. 38 (6), 954–966 (2011).
dc.relation.references[5] Ba˜nos R., Ortega J., Gil C., Fern´andez A., De Toro F. A simulated annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Systems with Applications. 40 (5), 1696–1707 (2013).
dc.relation.references[6] Braekers K., Ramaekers K., Nieuwenhuyse I. V. The vehicle routing problem: State of the art classification and review. Computers & Industrial Engineering. 99, 300–313 (2016).
dc.relation.references[7] El-Sherbeny N. A. Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods. Journal of King Saud University – Science. 22 (3), 123–131 (2010).
dc.relation.references[8] Teymourian E., Kayvanfar V., Komaki Gh. M., Zandieh M. Enhanced intelligent water drops and cuckoo search algorithms for solving the capacitated vehicle routing problem. Information Sciences. 334-335, 354–378 (2016).
dc.relation.references[9] Vidal T. Technical note: Split algorithm in O(n) for the capacitated vehicle routing problem. Computers & Operations Research. 69, 40–47 (2016).
dc.relation.references[10] Koc C., Bektas T., Jabali O., Laporte G. Thirty years of heterogeneous vehicle routing. European Journal of Operational Research. 249 (1), 1–21 (2016).
dc.relation.references[11] Schaus P., Renaud H. Multi-objective large neighborhood search. International Conference on Principles and Practice of Constraint Programming. Springer, Berlin, Heidelberg (2013).
dc.relation.references[12] Drake J. H., Ender O., Burke E. K. An improved choice function heuristic selection for cross domain heuristic search. International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg (2012).
dc.relation.references[13] Cowling P. I., Kendall G., Soubeiga E. A hyperheuristic approach to scheduling a sales summit, in Selected papers from the Third International Conference on Practice and Theory of Automated Timetabling III’, PATAT’00 (2001).
dc.relation.referencesen[1] Dhaenens C., Espinouse M. L., Penz B. Probl`emes combinatoires classiques In Recherche op´erationnelle et r´eseaux: m´ethodes d’analyse spatiale. Herm`es Science Publications (2002).
dc.relation.referencesen[2] Dantzig G., Fulkerson R., Johnson S. Solution of a large-scale travelling salesman problem. Journal of the Operations Research Society of America. 2 (4), 393–410 (1954).
dc.relation.referencesen[3] Baldacci R., Mingozzi A., Roberti R. Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. European Journal of Operational Research. 218 (1), 1–6 (2012).
dc.relation.referencesen[4] Balseiro S. R., Loiseau I., Ramonet J. An ant colony algorithm hybridized with insertion heuristics for the timedependent vehicle routing problem with time windows. Computers & Operations Research. 38 (6), 954–966 (2011).
dc.relation.referencesen[5] Ba˜nos R., Ortega J., Gil C., Fern´andez A., De Toro F. A simulated annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Systems with Applications. 40 (5), 1696–1707 (2013).
dc.relation.referencesen[6] Braekers K., Ramaekers K., Nieuwenhuyse I. V. The vehicle routing problem: State of the art classification and review. Computers & Industrial Engineering. 99, 300–313 (2016).
dc.relation.referencesen[7] El-Sherbeny N. A. Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods. Journal of King Saud University – Science. 22 (3), 123–131 (2010).
dc.relation.referencesen[8] Teymourian E., Kayvanfar V., Komaki Gh. M., Zandieh M. Enhanced intelligent water drops and cuckoo search algorithms for solving the capacitated vehicle routing problem. Information Sciences. 334-335, 354–378 (2016).
dc.relation.referencesen[9] Vidal T. Technical note: Split algorithm in O(n) for the capacitated vehicle routing problem. Computers & Operations Research. 69, 40–47 (2016).
dc.relation.referencesen[10] Koc C., Bektas T., Jabali O., Laporte G. Thirty years of heterogeneous vehicle routing. European Journal of Operational Research. 249 (1), 1–21 (2016).
dc.relation.referencesen[11] Schaus P., Renaud H. Multi-objective large neighborhood search. International Conference on Principles and Practice of Constraint Programming. Springer, Berlin, Heidelberg (2013).
dc.relation.referencesen[12] Drake J. H., Ender O., Burke E. K. An improved choice function heuristic selection for cross domain heuristic search. International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg (2012).
dc.relation.referencesen[13] Cowling P. I., Kendall G., Soubeiga E. A hyperheuristic approach to scheduling a sales summit, in Selected papers from the Third International Conference on Practice and Theory of Automated Timetabling III’, PATAT’00 (2001).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectзадача маршрутизації
dc.subjectгнучкі часові вікна
dc.subjectдослідження операцій
dc.subjectчисельне моделювання
dc.subjectадаптивний пошук великого околу
dc.subjectмета-евристичні алгоритми
dc.subjectvehicle routing problem
dc.subjectflexible time window
dc.subjectoperation research
dc.subjectnumerical simulation
dc.subjectadaptive large neighbourhood search
dc.subjectmeta-heuristic algorithm
dc.titleA modified adaptive large neighbourhood search for a vehicle routing problem with flexible time windows
dc.title.alternativeМодифікований адаптивний пошук великого околу для проблеми маршрутизації траспортних засобів з гнучкими часовими вікнами
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021v8n4_Labdiad_F-A_modified_adaptive_large_716-725.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2021v8n4_Labdiad_F-A_modified_adaptive_large_716-725__COVER.png
Size:
420.26 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: