Production of Iron, Titanium Dioxide Modofocations and Titanium

dc.citation.epage233
dc.citation.issue2
dc.citation.spage227
dc.citation.volume14
dc.contributor.affiliationNagiyev Institute of Catalysis and Inorganic Chemistry of ANAS
dc.contributor.affiliationAzerbaijan Technical University
dc.contributor.authorMammadov, Asif
dc.contributor.authorPashazade, Gunel
dc.contributor.authorGasymova, Afarida
dc.contributor.authorSharifova, Ulviya
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-12-30T08:53:20Z
dc.date.available2020-12-30T08:53:20Z
dc.date.created2020-01-24
dc.date.issued2020-01-24
dc.description.abstractВивчено умови відновлення концентратів титану-магнетиту (основні компоненти Fe 52–54 % та TiO2 5–7 %) природним газом для одержання порошку заліза та титанової фракції. З використанням теорії гранулювання в барабанному апараті та додаванням 25 % соди отримані гранули з оптимальним діаметром, вологістю, міцністю та пористістю. Встановлено, що в діапазоні температур 1143- 1198 К відбуваються реакції відновлення, якщо суміш водню та монооксиду вуглецю додається до природного газу у кількості 15 об %. Приведені блок-діаграми приготування концентратів титану-магнетиту для виробництва порошку заліза α-Fe (чистота 99 %), анатаз- і рутил-модифікацій діоксиду титану (99 % TiO2) та титану з чистотою 99 %.
dc.description.abstractConditions for the reduction of titaniummagnetite concentrates (main components are Fe 52–54 % and TiO2 5–7 %) by natural gas for obtaining iron powder and titanium fraction were studied. Based on the theory of granulation in the drum apparatus, granules with 25 % of soda fluxing additive with optimum diameter, humidity, strength and porosity were obtained. It was found that the reduction reactions in the temperature range of 1143–1198 K are carried out if a mixture of hydrogen and carbon monoxide is added to the natural gas in amount of 15 vol %. Block-diagrams for processing titaniummagnetite concentrates for the production of iron powder α-Fe (purity 99 %), anatase and rutile modifications of titanium dioxide (99 % TiO2) and titanium with a purity of 99% are presented.
dc.format.extent227-233
dc.format.pages7
dc.identifier.citationProduction of Iron, Titanium Dioxide Modofocations and Titanium / Asif Mammadov, Gunel Pashazade, Afarida Gasymova, Ulviya Sharifova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 227–233.
dc.identifier.citationenProduction of Iron, Titanium Dioxide Modofocations and Titanium / Asif Mammadov, Gunel Pashazade, Afarida Gasymova, Ulviya Sharifova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 227–233.
dc.identifier.doidoi.org/10.23939/chcht14.02.227
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/55785
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (14), 2020
dc.relation.references[1] Reznichenko V., Sadykhov G., Karyazin I.: Metally, 1997, 6, 3.
dc.relation.references[2] Alizade Z., Mikailova A., Samedzade K.: Azerb. Khim. Zh., 2008, 4, 64.
dc.relation.references[3] Mehdilo A., Irannajad M.: Physicochem. Probl. Miner. Proc., 2012, 48, 425. https://doi.org/10.5277/ppmp120209
dc.relation.references[4] Chen D., Zhao L., Liu Y. et al.: J. Hazard Mater., 2013, 88, 244. https://doi.org/10.1016/j.jhazmat.2012.10.052
dc.relation.references[5] Dmitriev A., Sheshukov O., Gazaleeva G. et al.: Appl. Mech. Mater., 2014, 283, 670. https://doi.org/10.4028/www.scientific.net/AMM.670-671.283
dc.relation.references[6] Hwang J.-Y., Jiang T., Kennedy M. et al. (Eds.): 8th International Symposium on High-Temperature Metallurgical Processing. Springer 2017. https://doi.org/10.1007/978-3-319-51340-9
dc.relation.references[7] Qiu G., Hu T, Bai C. et al.: Metall. Mater. Trans. B, 2013, 44, 252. https://doi.org/10.1007/s11663-012-9783-7
dc.relation.references[8] Kustov A., Kenova T., Zakirov R., Parfenov O.: Russ. J. Appl. Chem., 2017, 90, 1208. https://doi.org/10.1134/S107042721708002X
dc.relation.references[9] Kopkova E., Shchelokova E., Gromov P.: Hydrometall., 2015, 156, 21. https://doi.org/10.1016/j.hydromet.2015.05.007
dc.relation.references[10] Tathavadkar V., Jha A.: Proceedings of the VIIth Int.Conf. on Molten Slags Fluxes and Salts, South African Institute of Minig and Metallurgy, 2004, 255.
dc.relation.references[11] Kantemirov V., Titov R., Yakovlev A.: Obogaschepnie Rud, 2017, 4. https://doi.org/10.17580/or.2017.04.07
dc.relation.references[12] Alizade Z., Mammadov A., Qasimova A. et al.: Azerb. Khim. Zh., 2016, 1, 39.
dc.relation.references[13] Mamedov A., Samedzade G.,Gasymova A. et al.: Kondens. Sredy i Mezhfazn. Granicy, 2017, 19, 248.
dc.relation.references[14] Gasymova A., Samedzade G., Kelbaliev G. et al.: Fundamental'nye Issledovaniya, 2017, 9, 36.
dc.relation.references[15] Gudret I. Kelbaliyev, Asif N. Mamedov, Qasim M. Samedzadeet all.: Elixir Int. J. Mater. Sci., 2016, 96, 41434.
dc.relation.references[16] Manhique A.: PhD thesis, University of Pretoria, Pretoria 2012.
dc.relation.references[17] Zima T., Prosanov I.: Neorg. Mater., 2016, 52,1233. https://doi.org/10.7868/S0002337X16100195
dc.relation.references[18] metallurgu.ru/books/item/f00/s00/z0000004/st009.shtml
dc.relation.referencesen[1] Reznichenko V., Sadykhov G., Karyazin I., Metally, 1997, 6, 3.
dc.relation.referencesen[2] Alizade Z., Mikailova A., Samedzade K., Azerb. Khim. Zh., 2008, 4, 64.
dc.relation.referencesen[3] Mehdilo A., Irannajad M., Physicochem. Probl. Miner. Proc., 2012, 48, 425. https://doi.org/10.5277/ppmp120209
dc.relation.referencesen[4] Chen D., Zhao L., Liu Y. et al., J. Hazard Mater., 2013, 88, 244. https://doi.org/10.1016/j.jhazmat.2012.10.052
dc.relation.referencesen[5] Dmitriev A., Sheshukov O., Gazaleeva G. et al., Appl. Mech. Mater., 2014, 283, 670. https://doi.org/10.4028/www.scientific.net/AMM.670-671.283
dc.relation.referencesen[6] Hwang J.-Y., Jiang T., Kennedy M. et al. (Eds.): 8th International Symposium on High-Temperature Metallurgical Processing. Springer 2017. https://doi.org/10.1007/978-3-319-51340-9
dc.relation.referencesen[7] Qiu G., Hu T, Bai C. et al., Metall. Mater. Trans. B, 2013, 44, 252. https://doi.org/10.1007/s11663-012-9783-7
dc.relation.referencesen[8] Kustov A., Kenova T., Zakirov R., Parfenov O., Russ. J. Appl. Chem., 2017, 90, 1208. https://doi.org/10.1134/S107042721708002X
dc.relation.referencesen[9] Kopkova E., Shchelokova E., Gromov P., Hydrometall., 2015, 156, 21. https://doi.org/10.1016/j.hydromet.2015.05.007
dc.relation.referencesen[10] Tathavadkar V., Jha A., Proceedings of the VIIth Int.Conf. on Molten Slags Fluxes and Salts, South African Institute of Minig and Metallurgy, 2004, 255.
dc.relation.referencesen[11] Kantemirov V., Titov R., Yakovlev A., Obogaschepnie Rud, 2017, 4. https://doi.org/10.17580/or.2017.04.07
dc.relation.referencesen[12] Alizade Z., Mammadov A., Qasimova A. et al., Azerb. Khim. Zh., 2016, 1, 39.
dc.relation.referencesen[13] Mamedov A., Samedzade G.,Gasymova A. et al., Kondens. Sredy i Mezhfazn. Granicy, 2017, 19, 248.
dc.relation.referencesen[14] Gasymova A., Samedzade G., Kelbaliev G. et al., Fundamental'nye Issledovaniya, 2017, 9, 36.
dc.relation.referencesen[15] Gudret I. Kelbaliyev, Asif N. Mamedov, Qasim M. Samedzadeet all., Elixir Int. J. Mater. Sci., 2016, 96, 41434.
dc.relation.referencesen[16] Manhique A., PhD thesis, University of Pretoria, Pretoria 2012.
dc.relation.referencesen[17] Zima T., Prosanov I., Neorg. Mater., 2016, 52,1233. https://doi.org/10.7868/S0002337X16100195
dc.relation.referencesen[18] metallurgu.ru/books/item/f00/s00/z0000004/st009.shtml
dc.relation.urihttps://doi.org/10.5277/ppmp120209
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2012.10.052
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.670-671.283
dc.relation.urihttps://doi.org/10.1007/978-3-319-51340-9
dc.relation.urihttps://doi.org/10.1007/s11663-012-9783-7
dc.relation.urihttps://doi.org/10.1134/S107042721708002X
dc.relation.urihttps://doi.org/10.1016/j.hydromet.2015.05.007
dc.relation.urihttps://doi.org/10.17580/or.2017.04.07
dc.relation.urihttps://doi.org/10.7868/S0002337X16100195
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Mammadov A., Pashazade G., Gasymova A., Sharifova U., 2020
dc.subjectконцентрати титану-магнетиту
dc.subjectприродний газ
dc.subjectводень
dc.subjectоксид вуглецю
dc.subjectпорошок заліза
dc.subjectтитан
dc.subjecttitanium-magnetite concentrates
dc.subjectnatural gas
dc.subjecthydrogen
dc.subjectcarbon monoxide
dc.subjectiron powder
dc.subjecttitanium
dc.titleProduction of Iron, Titanium Dioxide Modofocations and Titanium
dc.title.alternativeПриготування титану-магнітних концентратів для виробництва заліза, модификацій диоксиду титану і титану
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2020v14n2_Mammadov_A-Production_of_Iron_Titanium_227-233.pdf
Size:
507.67 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2020v14n2_Mammadov_A-Production_of_Iron_Titanium_227-233__COVER.png
Size:
535.1 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.99 KB
Format:
Plain Text
Description: