Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Видавництво Львівської політехніки

Abstract

The nonlinear dynamics in generalized activator-inhibitor systems with space fractional derivatives is studied. As an example, the Brusselator model and the reaction–diffusion model with cubic nonlinearity, in which the classical spatial differential operators are replaced by their fractional analogues, are considered. The fractional operator reflects the nonlocal behavior of superdiffusion. The spatially homogeneous, time independent solution has been found for each system. We have also studied its linear stability and determined instability conditions of both Hopf and Turing. It was established that the anomalous diffusion (superdiffusion) leads to the qualitative change of nonlinear dynamics in mentioned systems.

Description

Keywords

reaction-diffusion system, fractional operator, superdiffusion, Brusselator model, cubic nonlinearity, Hopf and Turing instabilities, dissipative structures

Citation

Prytula Z. Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion / Z. Prytula // Вісник Національного університету "Львівська політехніка". Серія: Комп’ютерні науки та інформаційні технології : збірник наукових праць. – 2015. – № 826. – С. 230–237. – Bibliography: 24 titles.

Endorsement

Review

Supplemented By

Referenced By