Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion
Loading...
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Видавництво Львівської політехніки
Abstract
The nonlinear dynamics in generalized activator-inhibitor systems with space fractional
derivatives is studied. As an example, the Brusselator model and the reaction–diffusion model with cubic nonlinearity, in which the classical spatial differential operators are replaced by their fractional analogues, are considered. The fractional operator reflects the nonlocal behavior of superdiffusion. The spatially homogeneous, time independent solution has been found for each system. We have also studied its linear stability and determined instability conditions of both Hopf and Turing. It was established that the anomalous diffusion (superdiffusion) leads to the qualitative change of nonlinear dynamics in mentioned systems.
Description
Keywords
reaction-diffusion system, fractional operator, superdiffusion, Brusselator model, cubic nonlinearity, Hopf and Turing instabilities, dissipative structures
Citation
Prytula Z. Mathematical modelling of nonlinear dynamics in activator-inhibitor systems with superdiffusion / Z. Prytula // Вісник Національного університету "Львівська політехніка". Серія: Комп’ютерні науки та інформаційні технології : збірник наукових праць. – 2015. – № 826. – С. 230–237. – Bibliography: 24 titles.