Математична модель теплоелектричних процесів резисторного надпровідного обмежувача струму

dc.citation.epage106
dc.citation.issue548 : Комп’ютерні системи проектування. Теорія і практика
dc.citation.journalTitleВісник Національного університету “Львівська політехніка”
dc.citation.spage97
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.authorФедасюк, Д. В.
dc.contributor.authorСердюк, П. В.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-12T10:25:52Z
dc.date.available2020-03-12T10:25:52Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractНаведено математичну модель для аналізу теплоелектричних процесів у резистив- ному надпровідному обмежувачі струму для захисту мікроелектронних пристроїв. Отрима- но розв’язок нелінійного нестаціонарного тривимірного рівняння теплопровідності цієї моделі у аналітичному вигляді. Описано практичні результати модельних експериментів.
dc.description.abstractThis paper presents mathematical model for analysis thermal– and electrical process in resistive superconducting fault current limiter for microelectronics devices protection. Analytical solution for 3–dimensional, nonlinear transitional heat diffusion equation of the model was obtained.
dc.format.extent97-106
dc.format.pages10
dc.identifier.citationФедасюк Д. В. Математична модель теплоелектричних процесів резисторного надпровідного обмежувача струму / Д. В. Федасюк, П. В. Сердюк // Вісник Національного університету “Львівська політехніка”. — Львів : Видавництво Національного університету “Львівська політехніка”, 2005. — № 548 : Комп’ютерні системи проектування. Теорія і практика. — С. 97–106.
dc.identifier.citationenFedasiuk D. V. Matematychna model teploelektrychnykh protsesiv rezystornoho nadprovidnoho obmezhuvacha strumu / D. V. Fedasiuk, P. V. Serdiuk // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". — Lviv : Vydavnytstvo Natsionalnoho universytetu "Lvivska politekhnika", 2005. — No 548 : Kompiuterni systemy proektuvannia. Teoriia i praktyka. — P. 97–106.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/47250
dc.language.isouk
dc.publisherВидавництво Національного університету “Львівська політехніка”
dc.relation.ispartofВісник Національного університету “Львівська політехніка”, 548 : Комп’ютерні системи проектування. Теорія і практика, 2005
dc.relation.references1. S. Kalsi, A. Malozemoff. HTS fault current limiter concept // IEEE Power Engineering Society Meeting. – Denver, USA. – June 2004. – p. 113–117.
dc.relation.references2. S. Eckroad. Demonstration of Superconducting Fault current limiter // Transmissionsubstnsions project description, August 2003.
dc.relation.references3. www.superconductors.org.
dc.relation.references4. R. Petranovic, A. M. Miri. Lumped Network Model of a Resistive Type High Tc fault cur–rent limiter for transient investigations// International Conference on Power Systems Transients. – New Orleans, USA. – 2003. – p. 60–65.
dc.relation.references5. K. Kajikawa, K. Funaki, H. Hayashi, K. Terazono, and others. Numerical study on fundamental properties of a resistive type fault current limiter with QMG bulk superconductor reinforced by metal bypass// IEEE Transactions on Applied Superconductivity.– 2004.– Vol. 14, No. 2 (2004.6), pp. 847–850.
dc.relation.references6. K. Kajikawa,Y. Takahashi, K. Enpuku, K. Funaki, and others. Finite Element Analysis of Thermal and Mechanical Behaviour in Model Fault Current Limiter with QMG Bulk Superconductor// 19 International Conference on Magnet Technology Booklet.–Genoa, Italy.–2005. – pp. 21–24, No. MOA10P03.
dc.relation.references7. S.J. Chapman, A.D. Grief, S.D. Howison, M.D. McCulloch, and others. Vortex Velocity Laws to I–V data for Flat Superconductors//– IEEE Transactions on Applied Superconductivity. – March 2001. – Vol. 11, Issue 1 Part 3. – p. 3943–3946.
dc.relation.references8. A. Gurevich. Thermal instability near planar defects in superconductors// Applied physics letters. – 26 March 2001. – vol. 78, number 13. – p. 1891–1893.
dc.relation.references9. R. A. Weller. Computer Modelling of Superconducting Film Type Fault Current Limiters// IEEE Transactions on Applied Superconductivity. – 1999. – Vol. 9, No. 2 Pt1. – pp. 1377–1380.
dc.relation.references10. J. Lee, T. Huh, B. Kim, M. Park, and others. EMTDC Modeling Method of DC Reactor type Superconducting Fault Current Limiter// Korea–Japan Joint Workshop on Applied Superconductivity and Cryogenics. – Seoul, Korea. – 2002. – p.15.
dc.relation.references11. D. Agassi, D. K. Christen and S. J. Pennycook. Flux pinning and critical currents at low–angle grain boundaries in high–temperature superconductors// Applied physics letters.–October 2002. – vol. 81, number 15, p. 71.
dc.relation.references12. J. Rymashewski, R. Pawlak. Structural and electrical properties of metal–superconductor diffusion contact // MIXDES. – Wroclaw, Poland. – June 2002. – p. 283–286.
dc.relation.references13. J. Rymaszewski. Numerical simulation of thermal phenomena in metal–superconductor junction // MIXDES. – Lodz, Poland. – June 2003. – p. 346–351.
dc.relation.references14. J. Leszcynski, J. Rymashewski, E. Korzeniewska. Thermal phenomen in diffusion contact region of Au/bulk superconductor YbaCuO // MIXDES. – Zakopane, Poland. – June 2001. – p. 283–286.
dc.relation.references15. H. R. Semerad, H. Kinder, J. Grundmann, H. Mosebach, and others. Current limiting properties of YBCO films on sapphire substrates // EUCA 99. – Barcelona, Spain. – 14. – 17.09 1999. p. 30–32.
dc.relation.references16. S. Sugita, H. Ohsaki. FEM Analysis of Current Limiting Characteristics of Superconducting Thin Film Current Limiting Device by the Current Vector potential Method // Applied Superconductivity, IEEE Transactions. – June 2003. – Vol. 13, Issue: 2. – p. 2020 – 2023.
dc.relation.references17. Kim, S.B., Ishiyama, A., Okada, H., and Nomura, S. Normal zone propagation properties in Bi–2223/Ag superconducting multifilament tapes // Cryogenics. – 1998. – 38 n. 8, – p. 823.
dc.relation.referencesen1. S. Kalsi, A. Malozemoff. HTS fault current limiter concept, IEEE Power Engineering Society Meeting, Denver, USA, June 2004, p. 113–117.
dc.relation.referencesen2. S. Eckroad. Demonstration of Superconducting Fault current limiter, Transmissionsubstnsions project description, August 2003.
dc.relation.referencesen3. www.superconductors.org.
dc.relation.referencesen4. R. Petranovic, A. M. Miri. Lumped Network Model of a Resistive Type High Tc fault cur–rent limiter for transient investigations// International Conference on Power Systems Transients, New Orleans, USA, 2003, p. 60–65.
dc.relation.referencesen5. K. Kajikawa, K. Funaki, H. Hayashi, K. Terazono, and others. Numerical study on fundamental properties of a resistive type fault current limiter with QMG bulk superconductor reinforced by metal bypass// IEEE Transactions on Applied Superconductivity, 2004, Vol. 14, No. 2 (2004.6), pp. 847–850.
dc.relation.referencesen6. K. Kajikawa,Y. Takahashi, K. Enpuku, K. Funaki, and others. Finite Element Analysis of Thermal and Mechanical Behaviour in Model Fault Current Limiter with QMG Bulk Superconductor// 19 International Conference on Magnet Technology Booklet.–Genoa, Italy.–2005, pp. 21–24, No. MOA10P03.
dc.relation.referencesen7. S.J. Chapman, A.D. Grief, S.D. Howison, M.D. McCulloch, and others. Vortex Velocity Laws to I–V data for Flat Superconductors//– IEEE Transactions on Applied Superconductivity, March 2001, Vol. 11, Issue 1 Part 3, p. 3943–3946.
dc.relation.referencesen8. A. Gurevich. Thermal instability near planar defects in superconductors// Applied physics letters, 26 March 2001, vol. 78, number 13, p. 1891–1893.
dc.relation.referencesen9. R. A. Weller. Computer Modelling of Superconducting Film Type Fault Current Limiters// IEEE Transactions on Applied Superconductivity, 1999, Vol. 9, No. 2 Pt1, pp. 1377–1380.
dc.relation.referencesen10. J. Lee, T. Huh, B. Kim, M. Park, and others. EMTDC Modeling Method of DC Reactor type Superconducting Fault Current Limiter// Korea–Japan Joint Workshop on Applied Superconductivity and Cryogenics, Seoul, Korea, 2002, p.15.
dc.relation.referencesen11. D. Agassi, D. K. Christen and S. J. Pennycook. Flux pinning and critical currents at low–angle grain boundaries in high–temperature superconductors// Applied physics letters.–October 2002, vol. 81, number 15, p. 71.
dc.relation.referencesen12. J. Rymashewski, R. Pawlak. Structural and electrical properties of metal–superconductor diffusion contact, MIXDES, Wroclaw, Poland, June 2002, p. 283–286.
dc.relation.referencesen13. J. Rymaszewski. Numerical simulation of thermal phenomena in metal–superconductor junction, MIXDES, Lodz, Poland, June 2003, p. 346–351.
dc.relation.referencesen14. J. Leszcynski, J. Rymashewski, E. Korzeniewska. Thermal phenomen in diffusion contact region of Au/bulk superconductor YbaCuO, MIXDES, Zakopane, Poland, June 2001, p. 283–286.
dc.relation.referencesen15. H. R. Semerad, H. Kinder, J. Grundmann, H. Mosebach, and others. Current limiting properties of YBCO films on sapphire substrates, EUCA 99, Barcelona, Spain, 14, 17.09 1999. p. 30–32.
dc.relation.referencesen16. S. Sugita, H. Ohsaki. FEM Analysis of Current Limiting Characteristics of Superconducting Thin Film Current Limiting Device by the Current Vector potential Method, Applied Superconductivity, IEEE Transactions, June 2003, Vol. 13, Issue: 2, p. 2020 – 2023.
dc.relation.referencesen17. Kim, S.B., Ishiyama, A., Okada, H., and Nomura, S. Normal zone propagation properties in Bi–2223/Ag superconducting multifilament tapes, Cryogenics, 1998, 38 n. 8, p. 823.
dc.rights.holder© Національний університет “Львівська політехніка”, 2005
dc.rights.holder© Федасюк Д. В., Сердюк П. В., 2005
dc.subject.udc621.38.049.77
dc.titleМатематична модель теплоелектричних процесів резисторного надпровідного обмежувача струму
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2005n548_Fedasiuk_D_V-Matematychna_model_teploelektrychnykh_97-106.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2005n548_Fedasiuk_D_V-Matematychna_model_teploelektrychnykh_97-106__COVER.png
Size:
428.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.97 KB
Format:
Plain Text
Description: