Simulation of statistical mean and variance of normally distributed random values, transformed by nonlinear functions p|X| and √ X
dc.citation.epage | 325 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 318 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кособуцький, П. С. | |
dc.contributor.author | Каркульовська, М. С. | |
dc.contributor.author | Kosobutskyy, P. S. | |
dc.contributor.author | Karkulovska, M. S. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:14:21Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | У роботі виконані теоретичні дослідження закономірностей формування статистично усереднених і дисперсії нормально розподілених випадкових значень із необмеженим інтервалом значень аргументу, які перетворені нелінійним перетворенням функціями p |X| та √ X. Показано, що для нелінійного перетворення нормально розподіленої випадкової змінної квадратним коренем, інтеграли статистичного усереднення вищих порядків n > 1 задовольняють нерівність (y − Y )n 6= 0. На основі проведених теоретичних досліджень запропоновано коректні граничні m, σ → ∞. | |
dc.description.abstract | This paper presents theoretical studies of formation regularities for the statistical mean and variance of normally distributed random values with the unlimited argument values subjected to nonlinear transformations of functions |X| and X. It is shown that for nonlinear square root transformation of a normally distributed random variable, the integrals of higher order mean n>1 satisfy the inequality (y−Y¯¯¯¯)n¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯≠0. On the basis of the theoretical research, the correct boundaries m,σ→∞ of error transfer formulas are suggested. | |
dc.format.extent | 318-325 | |
dc.format.pages | 8 | |
dc.identifier.citation | Kosobutskyy P. S. Simulation of statistical mean and variance of normally distributed random values, transformed by nonlinear functions p|X| and √ X / P. S. Kosobutskyy, M. S. Karkulovska // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 318–325. | |
dc.identifier.citationen | Kosobutskyy P. S. Simulation of statistical mean and variance of normally distributed random values, transformed by nonlinear functions p|X| and √ X / P. S. Kosobutskyy, M. S. Karkulovska // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 318–325. | |
dc.identifier.doi | doi.org/10.23939/mmc2022.02.318 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63432 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 2 (9), 2022 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (9), 2022 | |
dc.relation.references | [1] Weisstein E. W. Cauchy Distribution. From MathWorld-A Wolfram Web Resource. | |
dc.relation.references | [2] Hudson D. Lectures on probability theory and elementary statistics. Geneva, CERN (1963). | |
dc.relation.references | [3] Suhir E. Applied Probability for Engineers and Scientistics. McGraw-Hill Companies (1997). | |
dc.relation.references | [4] Papoulis A. Probability, Random Variables, and Stochastic Processes. McGraw-Hill (1991). | |
dc.relation.references | [5] Kodolov I. M., Khudyakov S. T. Teoreticheskie osnovy verojtnostnyh metodov v inzhenernoeconomicheskich zadachah. Funkcional’nye pereobrazovanij sluchajnyh velechyn i sluchajnye fynkcii. Moskva, MADI (1985), (in Russian). | |
dc.relation.references | [6] Romanenko V. I., Kornilovska N. V. On the accuracy of error propagation calculations by analytic formulas obtained for the inverse transformation. Ukrainian Journal of Physics. 64 (3), 217–222 (2019). | |
dc.relation.references | [7] Leone F. C., Nelson L. S., Nottingham R. B. The folded normal distribution. Technometrics. 3 (4), 543–550 (1961). | |
dc.relation.references | [8] Gui W., Chen P.-H., Wu H. A Folded Normal Slash Distribution and its Applications to Non-negative Measurements. Journal of Data Science. 11 (2), 231–247 (2013). | |
dc.relation.references | [9] Rode G. G. Propagation of the Measurement Errors and Measured Means of Physical Quantities for The Elementary Functions x2 and √x. Ukrainian Journal of Physics. 62 (2), 184–191 (2017). | |
dc.relation.references | [10] Fotiadis D., Scheuring S., M¨uller S. A., Engel A., M¨uller D. J. Imaging and manipulation of biological structures with the AFM. Micron. 33 (4), 385–397 (2002). | |
dc.relation.references | [11] Vattulainen I., Ala-Nissila T., Kanakaala K. Physical tests for random numbers simulations. Physical Review Letters. 73 (19), 2513–2516 (1994). | |
dc.relation.references | [12] Lang T. Twently Statistical Errors Even You Can Find in Biomedical Research Articles. Croatian Medical Journal. 45 (4), 361–370 (2004). | |
dc.relation.references | [13] Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integraly i rjady. Elementarnye funkcii. Moskva, Nauka (1981), (in Russian). | |
dc.relation.references | [14] Ng E. W., Geller M. A Table o f Integrals of the Error Functions. Journal of Research of the National Bureau of Standerds – B. Mathematical Sciences. 73B (1), 1–20 (1969). | |
dc.relation.references | [15] From Web Resource: Table of Integrals. 2014 From http://integral-table.com. | |
dc.relation.references | [16] Kosobutskyy P. S. On the simulation of the mathematical expectation and variance of samples for gaussiandistributed random variables. Ukrainian Journal of Physics. 62 (2), 827–831 (2017). | |
dc.relation.references | [17] Kosobutskyy P. S. Analytical relations for the mathematical expectation and variance of a standard distributed random variable subjected to the √x transformation. Ukrainian Journal of Physics. 63 (3), 215–219 (2018). | |
dc.relation.referencesen | [1] Weisstein E. W. Cauchy Distribution. From MathWorld-A Wolfram Web Resource. | |
dc.relation.referencesen | [2] Hudson D. Lectures on probability theory and elementary statistics. Geneva, CERN (1963). | |
dc.relation.referencesen | [3] Suhir E. Applied Probability for Engineers and Scientistics. McGraw-Hill Companies (1997). | |
dc.relation.referencesen | [4] Papoulis A. Probability, Random Variables, and Stochastic Processes. McGraw-Hill (1991). | |
dc.relation.referencesen | [5] Kodolov I. M., Khudyakov S. T. Teoreticheskie osnovy verojtnostnyh metodov v inzhenernoeconomicheskich zadachah. Funkcional’nye pereobrazovanij sluchajnyh velechyn i sluchajnye fynkcii. Moskva, MADI (1985), (in Russian). | |
dc.relation.referencesen | [6] Romanenko V. I., Kornilovska N. V. On the accuracy of error propagation calculations by analytic formulas obtained for the inverse transformation. Ukrainian Journal of Physics. 64 (3), 217–222 (2019). | |
dc.relation.referencesen | [7] Leone F. C., Nelson L. S., Nottingham R. B. The folded normal distribution. Technometrics. 3 (4), 543–550 (1961). | |
dc.relation.referencesen | [8] Gui W., Chen P.-H., Wu H. A Folded Normal Slash Distribution and its Applications to Non-negative Measurements. Journal of Data Science. 11 (2), 231–247 (2013). | |
dc.relation.referencesen | [9] Rode G. G. Propagation of the Measurement Errors and Measured Means of Physical Quantities for The Elementary Functions x2 and √x. Ukrainian Journal of Physics. 62 (2), 184–191 (2017). | |
dc.relation.referencesen | [10] Fotiadis D., Scheuring S., M¨uller S. A., Engel A., M¨uller D. J. Imaging and manipulation of biological structures with the AFM. Micron. 33 (4), 385–397 (2002). | |
dc.relation.referencesen | [11] Vattulainen I., Ala-Nissila T., Kanakaala K. Physical tests for random numbers simulations. Physical Review Letters. 73 (19), 2513–2516 (1994). | |
dc.relation.referencesen | [12] Lang T. Twently Statistical Errors Even You Can Find in Biomedical Research Articles. Croatian Medical Journal. 45 (4), 361–370 (2004). | |
dc.relation.referencesen | [13] Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integraly i rjady. Elementarnye funkcii. Moskva, Nauka (1981), (in Russian). | |
dc.relation.referencesen | [14] Ng E. W., Geller M. A Table o f Integrals of the Error Functions. Journal of Research of the National Bureau of Standerds – B. Mathematical Sciences. 73B (1), 1–20 (1969). | |
dc.relation.referencesen | [15] From Web Resource: Table of Integrals. 2014 From http://integral-table.com. | |
dc.relation.referencesen | [16] Kosobutskyy P. S. On the simulation of the mathematical expectation and variance of samples for gaussiandistributed random variables. Ukrainian Journal of Physics. 62 (2), 827–831 (2017). | |
dc.relation.referencesen | [17] Kosobutskyy P. S. Analytical relations for the mathematical expectation and variance of a standard distributed random variable subjected to the √x transformation. Ukrainian Journal of Physics. 63 (3), 215–219 (2018). | |
dc.relation.uri | http://integral-table.com | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | статистичні середнє | |
dc.subject | дисперсія | |
dc.subject | перетворення | |
dc.subject | нормальний розподіл | |
dc.subject | випадкова величина | |
dc.subject | statistical mean | |
dc.subject | variance | |
dc.subject | transformation | |
dc.subject | normal distribution | |
dc.subject | random variable | |
dc.title | Simulation of statistical mean and variance of normally distributed random values, transformed by nonlinear functions p|X| and √ X | |
dc.title.alternative | Моделювання статистичних середніх і дисперсії нормально розподілених випадкових величин, перетворених нелінійними функціями p|X| та √ X | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1