low temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts

dc.citation.epage45
dc.citation.issue1
dc.citation.spage38
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationNestle Ukraine LLC
dc.contributor.affiliationCzech Academy of Sciences
dc.contributor.authorNebesnyi, Roman
dc.contributor.authorIvasiv, Volodymyr
dc.contributor.authorPikh, Zoryan
dc.contributor.authorKharandiuk, Tetiana
dc.contributor.authorShpyrka, Iryna
dc.contributor.authorVoronchak, Taras
dc.contributor.authorShatan, Anastasia-Bohdana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T10:50:17Z
dc.date.available2020-03-02T10:50:17Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractДосліджено каталітичну активність Se- вмісних органічних сполук, зокрема метилселенінової кислоти, бензенселенінової кислоти, фенілселенолу та дифеніл- диснленіду як потенційних каталізаторів окиснення ненаси- чених альдегідів пероксидом водню. Встановлено, що всі протестовані сполуки є активними в досліджуваній реакції і характеризуються різною ефективністю залежно від продукту реакції – акрилової кислоти чи метилакрилату. Встановленi оптимальні умови здійснення процесу, ката- лізатор та розчинник для одержання акрилової кислоти.
dc.description.abstractCatalytic performance of Se-containing organic substances, namely methylseleninic acid, benzeneseleninic acid, phenylselenol and diphenyldiselenide, has been tested as potential catalysts for unsaturated aldehydes oxidation by hydrogen peroxide. All tested substances proved to be active in the acrolein oxidation reaction but showed different efficiency regarding used solvents and the products of reaction – acrylic acid or methyl acrylate. Optimal catalyst, reaction conditions and solvent for acrylic acid synthesis have been determined.
dc.format.extent38-45
dc.format.pages8
dc.identifier.citationlow temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45.
dc.identifier.citationenlow temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts / Roman Nebesnyi, Volodymyr Ivasiv, Zoryan Pikh, Tetiana Kharandiuk, Iryna Shpyrka, Taras Voronchak, Anastasia-Bohdana Shatan // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 38–45.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46429
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (13), 2019
dc.relation.references1. Esmaeili A., Kakavand S.: Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009
dc.relation.references2. Zhou L., Donga B., Tang S. et al.: J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X
dc.relation.references3. Sato K., HyodoM., Takagi J. et al.: Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2
dc.relation.references4. Balinge K., Khiratkar A., Bhagat P.: J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105
dc.relation.references5. Singh S., Patel A., Prakashan P.: Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032
dc.relation.references6. Hajimohammadi M., Safari N., Mofakham H. et al.: Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124
dc.relation.references7. Guo H., Kemell M., Al-Hunaiti A. et al.: Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025
dc.relation.references8. Nwaukwa S., Keehn P.: Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9
dc.relation.references9. Marsden C., Taarning E., Hansen D. et al.: Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G
dc.relation.references10. Pikh Z., Nebesnyi R., Ivasiv V. et al.: Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401
dc.relation.references11. Alberto E., Braga A.: Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11
dc.relation.references12. Pikh Z., Ivasiv V.: Chem. Chem. Technol., 2012, 6, 9.
dc.relation.references13. Goti A., Cardona F.: Green Chem. React., 2008, 191.
dc.relation.references14. Hori T., Sharpless K.: J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015
dc.relation.references15. Rangraz Y., Nemati F., Elhampour A.: J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034
dc.relation.references16. Guo L., Huang K., Liu H.: J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6
dc.relation.references17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al.: J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3
dc.relation.references18. Brink G.-J., Vis J., Arends I. et al.: Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X
dc.relation.references19. Landi G., Lisi L., Russo G.: J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018
dc.relation.references20. TanimotoM., Nakamura D., Kawajiri T.: Pat. US 6545178, Publ. Apr. 8, 2003.
dc.relation.references21. Mamoru A.: J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5
dc.relation.references22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H.: Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168
dc.relation.references23. Liu R., Lyu S., Wang T.: J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050
dc.relation.referencesen1. Esmaeili A., Kakavand S., Comptes Rendus Chimie, 2006, 19, 936. https://doi.org/10.1016/j.crci.2016.02.009
dc.relation.referencesen2. Zhou L., Donga B., Tang S. et al., J. Energy Chem., 2013, 22, 659. https://doi.org/10.1016/S2095-4956(13)60087-X
dc.relation.referencesen3. Sato K., HyodoM., Takagi J. et al., Tetrahedron Lett., 2000, 41, 1439. https://doi.org/10.1016/S0040-4039(99)02310-2
dc.relation.referencesen4. Balinge K., Khiratkar A., Bhagat P., J. Mol. Liq., 2017, 242, 1085. https://doi.org/10.1016/j.molliq.2017.07.105
dc.relation.referencesen5. Singh S., Patel A., Prakashan P., Appl. Catal. A., 2015, 505, 131. https://doi.org/10.1016/j.apcata.2015.07.032
dc.relation.referencesen6. Hajimohammadi M., Safari N., Mofakham H. et al., Tetrahedron Lett., 2010, 51, 4061. https://doi.org/10.1016/j.tetlet.2010.05.124
dc.relation.referencesen7. Guo H., Kemell M., Al-Hunaiti A. et al., Catal. Commun., 2011, 12, 1260. https://doi.org/10.1016/j.catcom.2011.04.025
dc.relation.referencesen8. Nwaukwa S., Keehn P., Tetrahedron Lett., 1982, 23, 3131. https://doi.org/10.1016/S0040-4039(00)88577-9
dc.relation.referencesen9. Marsden C., Taarning E., Hansen D. et al., Green Chem., 2008, 10, 168. https://doi.org/10.1039/B712171G
dc.relation.referencesen10. Pikh Z., Nebesnyi R., Ivasiv V. et al., Chem. Chem. Technol., 2016, 10, 401. https://doi.org/10.23939/chcht10.04.401
dc.relation.referencesen11. Alberto E., Braga A., Activation of Peroxides by Organoselenium Catalysts: A Synthetic and Biological Perspective. [in:] Woollins J., Laitinen R. (Eds.), Selenium and Tellurium Chemistry. Springer, Berlin, Heidelberg 2011, 251-283. https://doi.org/10.1007/978-3-642-20699-3_11
dc.relation.referencesen12. Pikh Z., Ivasiv V., Chem. Chem. Technol., 2012, 6, 9.
dc.relation.referencesen13. Goti A., Cardona F., Green Chem. React., 2008, 191.
dc.relation.referencesen14. Hori T., Sharpless K., J. Org. Chem., 1978, 43, 1689. https://doi.org/10.1021/jo00403a015
dc.relation.referencesen15. Rangraz Y., Nemati F., Elhampour A., J. Colloid Interf. Sci., 2018, 509, 485. https://doi.org/10.1016/j.jcis.2017.09.034
dc.relation.referencesen16. Guo L., Huang K., Liu H., J. Nanopart. Res., 2016, 18, 74. https://doi.org/10.1007/s11051-016-3357-6
dc.relation.referencesen17. Narender N., Suresh Kumar Reddy K., KrishnaMohan K. et al., J. PorousMater., 2011, 18, 337. https://doi.org/10.1007/s10934-010-9383-3
dc.relation.referencesen18. Brink G.-J., Vis J., Arends I. et al., Tetrahedron, 2002, 58, 3977. https://doi.org/10.1016/S0040-4020(02)00248-X
dc.relation.referencesen19. Landi G., Lisi L., Russo G., J. Mol. Catal., 2005, 239, 172. https://doi.org/10.1016/j.molcata.2005.06.018
dc.relation.referencesen20. TanimotoM., Nakamura D., Kawajiri T., Pat. US 6545178, Publ. Apr. 8, 2003.
dc.relation.referencesen21. Mamoru A., J. Catal., 1986, 101, 473. https://doi.org/10.1016/0021-9517(86)90274-5
dc.relation.referencesen22. Talebian-Kiakalaieh A., Amin N.A., Hezaveh H., Renew. Sust. Energ. Rev., 2014, 40, 28. https://doi.org/10.1016/j.rser.2014.07.168
dc.relation.referencesen23. Liu R., Lyu S., Wang T., J. Ind. Eng. Chem., 2016, 37, 354. https://doi.org/10.1016/j.jiec.2016.03.050
dc.relation.urihttps://doi.org/10.1016/j.crci.2016.02.009
dc.relation.urihttps://doi.org/10.1016/S2095-4956(13)60087-X
dc.relation.urihttps://doi.org/10.1016/S0040-4039(99)02310-2
dc.relation.urihttps://doi.org/10.1016/j.molliq.2017.07.105
dc.relation.urihttps://doi.org/10.1016/j.apcata.2015.07.032
dc.relation.urihttps://doi.org/10.1016/j.tetlet.2010.05.124
dc.relation.urihttps://doi.org/10.1016/j.catcom.2011.04.025
dc.relation.urihttps://doi.org/10.1016/S0040-4039(00)88577-9
dc.relation.urihttps://doi.org/10.1039/B712171G
dc.relation.urihttps://doi.org/10.23939/chcht10.04.401
dc.relation.urihttps://doi.org/10.1007/978-3-642-20699-3_11
dc.relation.urihttps://doi.org/10.1021/jo00403a015
dc.relation.urihttps://doi.org/10.1016/j.jcis.2017.09.034
dc.relation.urihttps://doi.org/10.1007/s11051-016-3357-6
dc.relation.urihttps://doi.org/10.1007/s10934-010-9383-3
dc.relation.urihttps://doi.org/10.1016/S0040-4020(02)00248-X
dc.relation.urihttps://doi.org/10.1016/j.molcata.2005.06.018
dc.relation.urihttps://doi.org/10.1016/0021-9517(86)90274-5
dc.relation.urihttps://doi.org/10.1016/j.rser.2014.07.168
dc.relation.urihttps://doi.org/10.1016/j.jiec.2016.03.050
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Nebesnyi R., Ivasiv V., Pikh Z., Kharandiuk T., Shpyrka I., Voronchak T., Shatan A.-B., 2019
dc.subjectакрилова кислота
dc.subjectненасичені аль-дегіди
dc.subjectSe-органічні каталізатори
dc.subjectокиснення
dc.subjectпероксид водню
dc.subjectacrylic acid
dc.subjectunsaturated aldehydes
dc.subjectSeorganic catalysts
dc.subjectoxidation
dc.subjecthydrogen peroxide
dc.titlelow temperature acrolein to acrylic acid oxidation with hydrogen peroxide on Se-organic catalysts
dc.title.alternativeНизькотемпературне окиснення акролеїну до акрилової кислоти пероксидом водню на Se-органічних каталізаторах
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v13n1_Nebesnyi_R-low_temperature_acrolein_38-45.pdf
Size:
638.85 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v13n1_Nebesnyi_R-low_temperature_acrolein_38-45__COVER.png
Size:
511.95 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.04 KB
Format:
Plain Text
Description: