Fluorine-Containing Siloxane Based Polymer Electrolyte Membranes

dc.citation.epage450
dc.citation.issue4
dc.citation.spage444
dc.contributor.affiliationIv. Javakhishvili Tbilisi State University
dc.contributor.affiliationUniversity of Bialystok
dc.contributor.authorMukbaniani, Omari
dc.contributor.authorAneli, Jimsher
dc.contributor.authorPlonska-Brzezinska, Marta
dc.contributor.authorTatrishvili, Tamar
dc.contributor.authorMarkarashvili, Eliza
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-03T09:04:24Z
dc.date.available2020-03-03T09:04:24Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractПроведено реакції гідросилілування 2,4,6,8-тетрагідро-2,4,6,8-тетраметилциклотетра-силоксану (D4 H) з 2,2,3,3-тетрафлуорпропіл акрилатом та вінілтриетоксисиланом у присутності платинових каталізаторів (платино хлориста воднева кислота, каталізатор Карстеда і каталізатора Pt/C (10%) за температури 323 К) та одержано відповідний адукт (D4 R,R‘). За допомогою Фур‘є-спектроскопії, 1H, 13C, та 29Si ЯМР спектроскопії проведено аналіз синтезованого продукту D4 R,R‘. Вивчено золь-гель реакції D4 R,R‘, допованого трифлуорметилсульфонатом літію (трифлат) та одержано тверді полімер-електролітні мембрани. Із застосуванням електроімпендасної спектроскопії визначено електропровідність твердих полімерних електролітних мембран.
dc.description.abstractThe hydrosilylation reaction of 2,4,6,8-tetrahydro-2,4,6,8-tetramethylcyclotetrasiloxane (D4 H) with 2,2,3,3-tetrafluoropropyl acrylate and vinyltriethoxysilane in the presence of platinum catalysts (platinum hydrochloric acid, Karstedt’s catalysts and Pt/C (10%) at 323 K) has been carried out and corresponding addition adduct (D4 R,R‘) has been obtained. The synthesized product D4 R,R was analyzed by FT-IR, 1H, 13C, and 29Si NMR spectroscopy. Sol-gel reactions of D4 R,R doped with lithium trifluoromethylsulfonate (triflate) have been studied and solid polymer electrolyte membranes have been obtained. Electric conductivity of solid polymer electrolyte membranes has been determined via electrical impedance spectroscopy.
dc.format.extent444-450
dc.format.pages7
dc.identifier.citationFluorine-Containing Siloxane Based Polymer Electrolyte Membranes / Omari Mukbaniani, Jimsher Aneli, Marta Plonska-Brzezinska, Tamar Tatrishvili, Eliza Markarashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 444–450.
dc.identifier.citationenFluorine-Containing Siloxane Based Polymer Electrolyte Membranes / Omari Mukbaniani, Jimsher Aneli, Marta Plonska-Brzezinska, Tamar Tatrishvili, Eliza Markarashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 444–450.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46513
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (13), 2019
dc.relation.references1. Muldoon J., Bucur C., Boaretto N. et al.: Polym. Rev., 2015, 55, 208. https://doi.org/10.1080/15583724.2015.1011966
dc.relation.references2. Sun Ch., Liu J., Gong Yu. et al.: Nano Energ., 2017, 33, 363. https://doi.org/10.1016/j.nanoen.2017.01.028
dc.relation.references3. Goodenough J., Park K-S.: J. Am. Chem. Soc., 2013, 135, 1167. https://doi.org/10.1021/ja3091438
dc.relation.references4. GrünebaumM., Hiller M., Jankowsky S. et al.: Prog. in Sol. State Chem., 2014, 42, 85. https://doi.org/10.1016/j.progsolidstchem.2014.04.004
dc.relation.references5. Yue L., Ma J., Zhang J. et al.: Energ. StorageMater., 2016, 5, 139. https://doi.org/10.1016/j.ensm.2016.07.003
dc.relation.references6. Kim D.-G., Shim J.,Lee J. et al.: Polymer, 2013, 54, 5812. https://doi.org/10.1016/j.polymer.2013.08.049
dc.relation.references7. Ben youcef H., Garcia-Calvo O., Lago N. et al.: Electrochim. Acta, 2016, 220, 587. https://doi.org/10.1016/j.electacta.2016.10.122
dc.relation.references8. Liu T.-M., Saikia D., Ho S.-Y. et al.: RSC Adv., 2017, 7, 20373. https://doi.org/10.1039/C7RA01542A
dc.relation.references9. Boaretto N., Joost Ch., SeyfriedM. et al.: J. Power Sources, 2016, 325, 427. https://doi.org/10.1016/j.jpowsour.2016.06.034
dc.relation.references10. Tatrishvili T., Titvinidze G., Pirckheliani N. et al.: Oxid. Commun., 2015, 2, 776.
dc.relation.references11. Mukbaniani O., Brostow W., Aneli J. et al.: J. Pure Appl. Chem., 2018, 90, 989. https://doi.org/10.1515/pac-2017-0805
dc.relation.references12. Iwahara T., KusakabeM., ChibaM., Yonezawa K.: J. Polym. Sci. A, 1993, 31, 2617. https://doi.org/10.1002/pola.1993.080311023
dc.relation.references13. Spindler R., Shriver D.:Macromolecules, 1988, 21, 648. https://doi.org/10.1021/ma00181a019
dc.relation.references14. Mukbaniani O., Aneli J., Tatrishvili T. et al.:E-polymers, 2012, 089, 1. https://doi.org/10.1021/ma00181a019
dc.relation.references15. Zhang L., Zhang Z., Harring S. et al.: J. Mater. Chem., 2008, 18, 3713. https://doi.org/10.1039/b806290k
dc.relation.references16. Karan N., Pradhan D., Thomas R. et al.: Solid State Ionics, 2008, 179, 689. https://doi.org/10.1016/j.ssi.2008.04.034
dc.relation.references17. Ziman J.: Principles of the Theory of Solids, Cambridge University Press, Cambridge 1964. https://doi.org/10.1017/CBO9781139644075
dc.relation.referencesen1. Muldoon J., Bucur C., Boaretto N. et al., Polym. Rev., 2015, 55, 208. https://doi.org/10.1080/15583724.2015.1011966
dc.relation.referencesen2. Sun Ch., Liu J., Gong Yu. et al., Nano Energ., 2017, 33, 363. https://doi.org/10.1016/j.nanoen.2017.01.028
dc.relation.referencesen3. Goodenough J., Park K-S., J. Am. Chem. Soc., 2013, 135, 1167. https://doi.org/10.1021/ja3091438
dc.relation.referencesen4. GrünebaumM., Hiller M., Jankowsky S. et al., Prog. in Sol. State Chem., 2014, 42, 85. https://doi.org/10.1016/j.progsolidstchem.2014.04.004
dc.relation.referencesen5. Yue L., Ma J., Zhang J. et al., Energ. StorageMater., 2016, 5, 139. https://doi.org/10.1016/j.ensm.2016.07.003
dc.relation.referencesen6. Kim D.-G., Shim J.,Lee J. et al., Polymer, 2013, 54, 5812. https://doi.org/10.1016/j.polymer.2013.08.049
dc.relation.referencesen7. Ben youcef H., Garcia-Calvo O., Lago N. et al., Electrochim. Acta, 2016, 220, 587. https://doi.org/10.1016/j.electacta.2016.10.122
dc.relation.referencesen8. Liu T.-M., Saikia D., Ho S.-Y. et al., RSC Adv., 2017, 7, 20373. https://doi.org/10.1039/P.7RA01542A
dc.relation.referencesen9. Boaretto N., Joost Ch., SeyfriedM. et al., J. Power Sources, 2016, 325, 427. https://doi.org/10.1016/j.jpowsour.2016.06.034
dc.relation.referencesen10. Tatrishvili T., Titvinidze G., Pirckheliani N. et al., Oxid. Commun., 2015, 2, 776.
dc.relation.referencesen11. Mukbaniani O., Brostow W., Aneli J. et al., J. Pure Appl. Chem., 2018, 90, 989. https://doi.org/10.1515/pac-2017-0805
dc.relation.referencesen12. Iwahara T., KusakabeM., ChibaM., Yonezawa K., J. Polym. Sci. A, 1993, 31, 2617. https://doi.org/10.1002/pola.1993.080311023
dc.relation.referencesen13. Spindler R., Shriver D.:Macromolecules, 1988, 21, 648. https://doi.org/10.1021/ma00181a019
dc.relation.referencesen14. Mukbaniani O., Aneli J., Tatrishvili T. et al.:E-polymers, 2012, 089, 1. https://doi.org/10.1021/ma00181a019
dc.relation.referencesen15. Zhang L., Zhang Z., Harring S. et al., J. Mater. Chem., 2008, 18, 3713. https://doi.org/10.1039/b806290k
dc.relation.referencesen16. Karan N., Pradhan D., Thomas R. et al., Solid State Ionics, 2008, 179, 689. https://doi.org/10.1016/j.ssi.2008.04.034
dc.relation.referencesen17. Ziman J., Principles of the Theory of Solids, Cambridge University Press, Cambridge 1964. https://doi.org/10.1017/CBO9781139644075
dc.relation.urihttps://doi.org/10.1080/15583724.2015.1011966
dc.relation.urihttps://doi.org/10.1016/j.nanoen.2017.01.028
dc.relation.urihttps://doi.org/10.1021/ja3091438
dc.relation.urihttps://doi.org/10.1016/j.progsolidstchem.2014.04.004
dc.relation.urihttps://doi.org/10.1016/j.ensm.2016.07.003
dc.relation.urihttps://doi.org/10.1016/j.polymer.2013.08.049
dc.relation.urihttps://doi.org/10.1016/j.electacta.2016.10.122
dc.relation.urihttps://doi.org/10.1039/C7RA01542A
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2016.06.034
dc.relation.urihttps://doi.org/10.1515/pac-2017-0805
dc.relation.urihttps://doi.org/10.1002/pola.1993.080311023
dc.relation.urihttps://doi.org/10.1021/ma00181a019
dc.relation.urihttps://doi.org/10.1039/b806290k
dc.relation.urihttps://doi.org/10.1016/j.ssi.2008.04.034
dc.relation.urihttps://doi.org/10.1017/CBO9781139644075
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Mukbaniani O., Aneli J., Plonska-Brzezinska M., Tatrishvili T., Markarashvili E., 2019
dc.subjectгідросилілування
dc.subjectзоль-гель реакції
dc.subjectспектроскопія
dc.subjectполімерна електролітна мембрана
dc.subjectелектропровідність
dc.subjecthydrosilylation
dc.subjectsol-gel reactions
dc.subjectspectroscopy
dc.subjectpolymer electrolyte membrane
dc.subjectelectric conductivity
dc.titleFluorine-Containing Siloxane Based Polymer Electrolyte Membranes
dc.title.alternativeФлуоровмісні тверді полімер-електролітні мембрани на основі силоксану
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v13n4_Mukbaniani_O-Fluorine_Containing_444-450.pdf
Size:
505.77 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v13n4_Mukbaniani_O-Fluorine_Containing_444-450__COVER.png
Size:
552.26 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.02 KB
Format:
Plain Text
Description: