Дослідження акустичної емісії від системи компланарних тріщин
dc.citation.epage | 50 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп'ютерні системи проектування. Теорія і практика | |
dc.citation.spage | 45 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Львівський національний університет ім. І. Франка | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Станкевич, О. | |
dc.contributor.author | Станкевич, Н. | |
dc.contributor.author | Stankevych, O. | |
dc.contributor.author | Stankevych, N. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-03-08T09:39:57Z | |
dc.date.available | 2023-03-08T09:39:57Z | |
dc.date.created | 2021-08010 | |
dc.date.issued | 2021-08010 | |
dc.description.abstract | Розв’язано динамічну задачу про поле переміщень у пружному півпросторі, породжене усталеним у часі зміщенням поверхонь системи дископодібних компланарних тріщин. Розв’язки отримано методом граничних інтегральних рівнянь. Побудовано залежності пружних переміщень на поверхні півпростору від хвильового числа, кількості дефектів та глибин їх залягання. | |
dc.description.abstract | The dynamic problem of the displacement field in an elastic half-space caused by the time-steady displacement of the surfaces of the system of disc-shaped coplanar cracks is solved. The solutions are obtained by the method of boundary integral equations. The dependences of elastic displacements on the surface of the half-space on the wave number, the number of defects and the depths of their occurrence are constructed. | |
dc.format.extent | 45-50 | |
dc.format.pages | 6 | |
dc.identifier.citation | Станкевич О. Дослідження акустичної емісії від системи компланарних тріщин / О. Станкевич, Н. Станкевич // Комп'ютерні системи проектування. Теорія і практика. — Львів : Видавництво Львівської політехніки, 2021. — Vol 3. — № 1. — С. 45–50. | |
dc.identifier.citationen | Stankevych O., Stankevych N. (2021) Doslidzhennia akustychnoi emisii vid systemy komplanarnykh trishchyn [Research of acoustic emissions from the system of complanary cracks]. Computer Design Systems. Theory and Practice (Lviv), vol. 3, no 1, pp. 45-50 [in Ukrainian]. | |
dc.identifier.doi | https://doi.org/10.23939/cds2021.01.045 | |
dc.identifier.issn | 2707-6784 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57569 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп'ютерні системи проектування. Теорія і практика, 1 (3), 2021 | |
dc.relation.ispartof | Computer Design Systems. Theory and Practice, 1 (3), 2021 | |
dc.relation.references | 1. Carpinteri, А., Lacidogna, G. Acoustic Emission and Critical Phenomena: From Structural Mechanics to Geophysics. CRC Press, 2008, 267. https://doi.org/10.1201/9780203892220. | |
dc.relation.references | 2. Godin, N., Reynaud, P., Fantozzi, G. Acoustic emission and durability of composite materials. Wiley, 2018, 206. https://doi.org/10.1002/9781119426660. | |
dc.relation.references | 3. Li, D. Rail crack monitoring using acoustic emission technique. Springer, 2018, 157. https:// doi.org/10.1007/978-981-10-8348-8. | |
dc.relation.references | 4. Ohtsu, M. Innovative AE and NDT techniques for on-site measurement of concrete and masonry structures. Springer, 2016, 185. https://doi.org/10.1007/978-94-017-7606-6. | |
dc.relation.references | 5. Andreykiv, O., Skalsky, V., Serhiyenko, O., Rudavskyy, D. Acoustic emission estimation of crack formation in aluminium alloys. Engineering Fracture Mechanics, 2010, 77 (5), 759−767. https://doi.org/10.1016/j.engfracmech.2010.01.009. | |
dc.relation.references | 6. Keshtgar, A., Modarres, M. Detecting crack initiation based on acoustic emission. Chemical Engineering Transactions, 2013, 33, 547−552. | |
dc.relation.references | 7. Lysak, M. V. Acoustic emission during jumps in subcritical growth of crack in three-dimensional bodies. Engineering Fracture Mechanics, 1994, 47 (6), 873−879. https://doi.org/10.1016/0013-7944(94)90065-5. | |
dc.relation.references | 8. Wolf, J., Pirskawetz, S., Zang, A. Detection of crack propagation in concrete with embedded ultrasonic sensors. Engineering Fracture Mechanics, 2015, 146, 161–171. https://doi.org/10.1016/ j.engfracmech.2015.07.058 | |
dc.relation.references | 9. Nazarchuk, Z., Skalskyi, V., Serhiyenko, O. Acoustic emission. Methodology and application. Springer, 2017. XIV, 283. https://doi.org/10.1007/978-3-319-49350-3. | |
dc.relation.references | 10. Skalskyi, V., Stankevych, O., Serhiyenko, O. Wave displacement field at half-space surface caused by an internal crack under twisting load. Wave Motion, 2013, 50 (2), 326−333. https://doi.org/ 10.1016/j.wavemoti.2012.09.001. | |
dc.relation.references | 11. Stankevych, O., Skalskyi, V. The vibration of a half-space due to a buried mode I crack opening. Wave Motion, 2017, 72, 142−153. https://doi.org/10.1016/j.wavemoti.2017.02.003. | |
dc.relation.references | 12. Stankevych, V. Z. Stress intensity near a crack in the composition of a half space and a layer under harmonic loading. Materials Science, 2008, 44(2), 175–182. https://doi.org/10.1007/s11003-008-9065-3. | |
dc.relation.references | 13. Zhang, Ch., Gross, D. On wave propagation in elastic solids with cracks. Comp. Mech. Publ., 1998, 267. | |
dc.relation.references | 14. Stankevich, V. Z. Computation of certain double integrals those are characteristic of dynamic problems of the theory of cracks in a semi-infinite body. Journal of Mathematical Sciences, 1996, 81(6), 3048–3052. https://doi.org/10.1007/BF02362592. | |
dc.relation.referencesen | 1. Carpinteri, A., Lacidogna, G. Acoustic Emission and Critical Phenomena: From Structural Mechanics to Geophysics. CRC Press, 2008, 267. https://doi.org/10.1201/9780203892220. | |
dc.relation.referencesen | 2. Godin, N., Reynaud, P., Fantozzi, G. Acoustic emission and durability of composite materials. Wiley, 2018, 206. https://doi.org/10.1002/9781119426660. | |
dc.relation.referencesen | 3. Li, D. Rail crack monitoring using acoustic emission technique. Springer, 2018, 157. https:// doi.org/10.1007/978-981-10-8348-8. | |
dc.relation.referencesen | 4. Ohtsu, M. Innovative AE and NDT techniques for on-site measurement of concrete and masonry structures. Springer, 2016, 185. https://doi.org/10.1007/978-94-017-7606-6. | |
dc.relation.referencesen | 5. Andreykiv, O., Skalsky, V., Serhiyenko, O., Rudavskyy, D. Acoustic emission estimation of crack formation in aluminium alloys. Engineering Fracture Mechanics, 2010, 77 (5), 759−767. https://doi.org/10.1016/j.engfracmech.2010.01.009. | |
dc.relation.referencesen | 6. Keshtgar, A., Modarres, M. Detecting crack initiation based on acoustic emission. Chemical Engineering Transactions, 2013, 33, 547−552. | |
dc.relation.referencesen | 7. Lysak, M. V. Acoustic emission during jumps in subcritical growth of crack in three-dimensional bodies. Engineering Fracture Mechanics, 1994, 47 (6), 873−879. https://doi.org/10.1016/0013-7944(94)90065-5. | |
dc.relation.referencesen | 8. Wolf, J., Pirskawetz, S., Zang, A. Detection of crack propagation in concrete with embedded ultrasonic sensors. Engineering Fracture Mechanics, 2015, 146, 161–171. https://doi.org/10.1016/ j.engfracmech.2015.07.058 | |
dc.relation.referencesen | 9. Nazarchuk, Z., Skalskyi, V., Serhiyenko, O. Acoustic emission. Methodology and application. Springer, 2017. XIV, 283. https://doi.org/10.1007/978-3-319-49350-3. | |
dc.relation.referencesen | 10. Skalskyi, V., Stankevych, O., Serhiyenko, O. Wave displacement field at half-space surface caused by an internal crack under twisting load. Wave Motion, 2013, 50 (2), 326−333. https://doi.org/ 10.1016/j.wavemoti.2012.09.001. | |
dc.relation.referencesen | 11. Stankevych, O., Skalskyi, V. The vibration of a half-space due to a buried mode I crack opening. Wave Motion, 2017, 72, 142−153. https://doi.org/10.1016/j.wavemoti.2017.02.003. | |
dc.relation.referencesen | 12. Stankevych, V. Z. Stress intensity near a crack in the composition of a half space and a layer under harmonic loading. Materials Science, 2008, 44(2), 175–182. https://doi.org/10.1007/s11003-008-9065-3. | |
dc.relation.referencesen | 13. Zhang, Ch., Gross, D. On wave propagation in elastic solids with cracks. Comp. Mech. Publ., 1998, 267. | |
dc.relation.referencesen | 14. Stankevich, V. Z. Computation of certain double integrals those are characteristic of dynamic problems of the theory of cracks in a semi-infinite body. Journal of Mathematical Sciences, 1996, 81(6), 3048–3052. https://doi.org/10.1007/BF02362592. | |
dc.relation.uri | https://doi.org/10.1201/9780203892220 | |
dc.relation.uri | https://doi.org/10.1002/9781119426660 | |
dc.relation.uri | https://doi.org/10.1007/978-94-017-7606-6 | |
dc.relation.uri | https://doi.org/10.1016/j.engfracmech.2010.01.009 | |
dc.relation.uri | https://doi.org/10.1016/0013-7944(94)90065-5 | |
dc.relation.uri | https://doi.org/10.1016/ | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-49350-3 | |
dc.relation.uri | https://doi.org/ | |
dc.relation.uri | https://doi.org/10.1016/j.wavemoti.2017.02.003 | |
dc.relation.uri | https://doi.org/10.1007/s11003-008-9065-3 | |
dc.relation.uri | https://doi.org/10.1007/BF02362592 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.rights.holder | © Станкевич О., Станкевич Н., 2021 | |
dc.subject | півпростір | |
dc.subject | дископодібна тріщина | |
dc.subject | акустична емісія | |
dc.subject | метод граничних інтегральних рівнянь | |
dc.subject | half-space | |
dc.subject | penny-shaped crack | |
dc.subject | acoustic emission | |
dc.subject | boundary integral equations method | |
dc.subject.udc | 539.3 | |
dc.title | Дослідження акустичної емісії від системи компланарних тріщин | |
dc.title.alternative | Research of acoustic emissions from the system of complanary cracks | |
dc.type | Article |