Transport Phenomena in Copper Doped Cadmium Telluride: Calculation from the First Principles
dc.citation.epage | 43 | |
dc.citation.issue | 1 | |
dc.citation.spage | 37 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Малик, Орест | |
dc.contributor.author | Петрович, Ігор | |
dc.contributor.author | Кеньо, Галина | |
dc.contributor.author | Malyk, Orest | |
dc.contributor.author | Petrovych, Ihor | |
dc.contributor.author | Kenyo, Halyna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-26T09:41:16Z | |
dc.date.available | 2023-04-26T09:41:16Z | |
dc.date.created | 2022-04-04 | |
dc.date.issued | 2022-04-04 | |
dc.description.abstract | У роботі розглянуто метод визначення енергетичного спектра, хвильової функції важкої дірки та кристалічного потенціалу в CdTe за довільно заданої температури. За допомогою цього підходу в межах методу суперкомірки розраховано температурні залежності енергій іонізації різних типів дефектів, спричинених впровадженням домішки міді в телурид кадмію. Також запропонований метод дає змогу визначити температурну залежність оптичного та акустичного потенціалів деформації, а також залежність від температури параметрів розсіювання важких дірок на іонізованих домішках, полярних оптичних, п’єзооптичних та п’єзоакустичних фононах. У межах близькодіючих моделей розсіяння розглянуто температурні залежності рухливості важких дірок і коефіцієнта Холла. | |
dc.description.abstract | In the presented work, the method of determining the energy spectrum, the wave function of the heavy hole and the crystal potential in CdTe at an arbitrarily given temperature is considered. Using this approach within the framework of the supercell method the temperature dependences of the ionization energies of various types of defects caused by the introduction of copper impurity in cadmium telluride are calculated. Also the proposed method makes it possible to define the temperature dependence of the optical and acoustic deformation potentials, as well as the temperature dependence of the scattering parameters of heavy holes on ionized impurities, polar optical, piezooptical and piezoacoustic phonons. Within the framework of shortrange scattering models, the temperature dependences of the heavy hole mobility and Hall factor are considered. | |
dc.format.extent | 37-43 | |
dc.format.pages | 7 | |
dc.identifier.citation | Malyk O. Transport Phenomena in Copper Doped Cadmium Telluride: Calculation from the First Principles / Orest Malyk, Ihor Petrovych, Halyna Kenyo // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 1. — P. 37–43. | |
dc.identifier.citationen | Malyk O., Petrovych I., Kenyo H. (2022) Transport Phenomena in Copper Doped Cadmium Telluride: Calculation from the First Principles. Computational Problems of Electrical Engineering (Lviv), vol. 12, no 1, pp. 37-43. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/58476 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 1 (12), 2022 | |
dc.relation.references | [1] I. Sankin and D. Krasikov, “Kinetic simulations of Cu doping in chlorinated CdSeTe PV absorbers”, Phys. Status Solidi A, vol. 215, p. 1800887-1-11, 2019. | |
dc.relation.references | [2] Su-Huai. Wei, and S. B. Zhang, “Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe”, Phys. Rev. B, vol. 66, p.155211-1-10, 2002. | |
dc.relation.references | [3] Jie Ma, et al., “Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe”, Phys. Rev. B, vol. 83, p. 245207-1-7, 2011. | |
dc.relation.references | [4] Ji-Hui Yang, et al., “Review on first-principles study of defect properties of CdTe as a solar cell absorber”, Semicond. Sci.Technol., vol. 31, p. 083002-1-22, 2016. | |
dc.relation.references | [5] D. Krasikov, et al., “First-principles-based analysis of the influence of Cu on CdTe electronic properties”, Thin Solid Films, vol. 535 pp. 322–325, 2013. | |
dc.relation.references | [6] W. Orellana, E. Menendez-Proupin, and M. A. Flores, “Energetics and electronic properties of interstitial chlorine in CdTe”, Phys. Status Solidi B, vol. 256, p. 1800219-1-7, 2019. | |
dc.relation.references | [7] I. Sankin, and D. Krasikov, “Defect interactions and the role of complexes in CdTe solar cell absorber”, J. Mater. Chem. A, vol. 5, pp. 3503–3515, 2017. | |
dc.relation.references | [8] O. Malyk and S. Syrotyuk, “New scheme for calculating the kinetic coefficients in CdTe based on firstprinciple wave function”, Comput. Mater. Sci., vol. 139, pp. 387–394, 2017. | |
dc.relation.references | [9] K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen, “Phonon-limited mobility in n-type single-layer MoS2 from first principles”, Phys. Rev.B, vol. 85,p. 115317-1-16, 2012. | |
dc.relation.references | [10] O. Restrepo, K. Varga, and S. Pantelides, “Firstprinciples calculations of electron mobilities in silicon: phonon and Coulomb scattering”, Appl. Phys. Lett., vol. 94, p. 212103-1-3, 2009. | |
dc.relation.references | [11]O. D. Restrepo, et al., “First principles method to simulate electron mobilities in 2D materials”, New J. Phys., vol. 16, p. 105009-1-12, 2014. | |
dc.relation.references | [12]X. Li, et al., “Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles”, Phys. Rev. B, vol. 87, p. 115418-1-9, 2013. | |
dc.relation.references | [13]Wu. Li, “Electrical transport limited by electronphonon coupling from Boltzmann transport equation: an ab initio study of Si, Al, and MoS2”, Phys. Rev. B, vol. 92, p. 075405-1-10, 2015. | |
dc.relation.references | [14]O. P. Malyk, S.V. Syrotyuk, “The local electron interaction with point defects in sphalerite zinc selenide: calculation from the first principles”, J. Electron. Mater., vol. 47, pp. 4212–4218, 2018. | |
dc.relation.references | [15]O. P. Malyk, “Prediction of the kinetic properties of sphalerite CdSexTe1-x(0.1£x£0.5) solid solution: ab initio approach”, J. Electron. Mater., vol. 49, pp. 3080–3088, 2020. | |
dc.relation.references | [16] G. L. Hansen, J. L. Schmit, and T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe”, J. Appl. Phys., vol. 53, pp. 7099–7101, 1982. | |
dc.relation.references | [17] A. Haug, “Zur statischen Näherung des Festkörperproblems”, Z. Physik, vol. 175, pp. 166–171, 1963. | |
dc.relation.references | [18] C. de Boor, A Practical Guide to Splines, New York: Springer-Verlag, 1978. | |
dc.relation.references | [19] B. Segall and D. T. F. Marple, In Properties of compounds: Physics and Chemistry of II–VI Compounds, Eds. M. Aven and J. S. Prener, North Holland, Amsterdam: Intersciemce (Wiley), p. 317, 1967. | |
dc.relation.references | [20] D. de Nobel, “Phase equilibria and semiconducting properties of cadmium telluride”, Philips Res. Rep., vol. 14, pp. 361–399, 1959. | |
dc.relation.references | [21] S. Yamada, “On the electrical and optical properties of p-type cadmium telluride crystals”, J. Phys. Soc. Jpn., vol. 15, pp. 1940–1944, 1960. | |
dc.relation.references | [22] L. S. Dang, G. Neu, and R. Romestain, “Optical detection of cyclotron resonance of electron and holes in CdTe”, Solid State Commun., vol. 44, pp. 1187–1190, 1982. | |
dc.relation.references | [23] O. P. Malyk, “Electron scattering in Hg1-xCdxTe at high temperature”, Ukr. J. Phys., vol. 35, pp. 1374–1376, 1990. | |
dc.relation.references | [24] O. P. Malyk, “Nonelastic charge carrier scattering in mercury telluride”, J. Alloys Compd., vol. 371/1-2 pp. 146–149, 2004. | |
dc.relation.referencesen | [1] I. Sankin and D. Krasikov, "Kinetic simulations of Cu doping in chlorinated CdSeTe PV absorbers", Phys. Status Solidi A, vol. 215, p. 1800887-1-11, 2019. | |
dc.relation.referencesen | [2] Su-Huai. Wei, and S. B. Zhang, "Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe", Phys. Rev. B, vol. 66, p.155211-1-10, 2002. | |
dc.relation.referencesen | [3] Jie Ma, et al., "Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe", Phys. Rev. B, vol. 83, p. 245207-1-7, 2011. | |
dc.relation.referencesen | [4] Ji-Hui Yang, et al., "Review on first-principles study of defect properties of CdTe as a solar cell absorber", Semicond. Sci.Technol., vol. 31, p. 083002-1-22, 2016. | |
dc.relation.referencesen | [5] D. Krasikov, et al., "First-principles-based analysis of the influence of Cu on CdTe electronic properties", Thin Solid Films, vol. 535 pp. 322–325, 2013. | |
dc.relation.referencesen | [6] W. Orellana, E. Menendez-Proupin, and M. A. Flores, "Energetics and electronic properties of interstitial chlorine in CdTe", Phys. Status Solidi B, vol. 256, p. 1800219-1-7, 2019. | |
dc.relation.referencesen | [7] I. Sankin, and D. Krasikov, "Defect interactions and the role of complexes in CdTe solar cell absorber", J. Mater. Chem. A, vol. 5, pp. 3503–3515, 2017. | |
dc.relation.referencesen | [8] O. Malyk and S. Syrotyuk, "New scheme for calculating the kinetic coefficients in CdTe based on firstprinciple wave function", Comput. Mater. Sci., vol. 139, pp. 387–394, 2017. | |
dc.relation.referencesen | [9] K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen, "Phonon-limited mobility in n-type single-layer MoS2 from first principles", Phys. Rev.B, vol. 85,p. 115317-1-16, 2012. | |
dc.relation.referencesen | [10] O. Restrepo, K. Varga, and S. Pantelides, "Firstprinciples calculations of electron mobilities in silicon: phonon and Coulomb scattering", Appl. Phys. Lett., vol. 94, p. 212103-1-3, 2009. | |
dc.relation.referencesen | [11]O. D. Restrepo, et al., "First principles method to simulate electron mobilities in 2D materials", New J. Phys., vol. 16, p. 105009-1-12, 2014. | |
dc.relation.referencesen | [12]X. Li, et al., "Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles", Phys. Rev. B, vol. 87, p. 115418-1-9, 2013. | |
dc.relation.referencesen | [13]Wu. Li, "Electrical transport limited by electronphonon coupling from Boltzmann transport equation: an ab initio study of Si, Al, and MoS2", Phys. Rev. B, vol. 92, p. 075405-1-10, 2015. | |
dc.relation.referencesen | [14]O. P. Malyk, S.V. Syrotyuk, "The local electron interaction with point defects in sphalerite zinc selenide: calculation from the first principles", J. Electron. Mater., vol. 47, pp. 4212–4218, 2018. | |
dc.relation.referencesen | [15]O. P. Malyk, "Prediction of the kinetic properties of sphalerite CdSexTe1-x(0.1£x£0.5) solid solution: ab initio approach", J. Electron. Mater., vol. 49, pp. 3080–3088, 2020. | |
dc.relation.referencesen | [16] G. L. Hansen, J. L. Schmit, and T. N. Casselman, "Energy gap versus alloy composition and temperature in Hg1-xCdxTe", J. Appl. Phys., vol. 53, pp. 7099–7101, 1982. | |
dc.relation.referencesen | [17] A. Haug, "Zur statischen Näherung des Festkörperproblems", Z. Physik, vol. 175, pp. 166–171, 1963. | |
dc.relation.referencesen | [18] C. de Boor, A Practical Guide to Splines, New York: Springer-Verlag, 1978. | |
dc.relation.referencesen | [19] B. Segall and D. T. F. Marple, In Properties of compounds: Physics and Chemistry of II–VI Compounds, Eds. M. Aven and J. S. Prener, North Holland, Amsterdam: Intersciemce (Wiley), p. 317, 1967. | |
dc.relation.referencesen | [20] D. de Nobel, "Phase equilibria and semiconducting properties of cadmium telluride", Philips Res. Rep., vol. 14, pp. 361–399, 1959. | |
dc.relation.referencesen | [21] S. Yamada, "On the electrical and optical properties of p-type cadmium telluride crystals", J. Phys. Soc. Jpn., vol. 15, pp. 1940–1944, 1960. | |
dc.relation.referencesen | [22] L. S. Dang, G. Neu, and R. Romestain, "Optical detection of cyclotron resonance of electron and holes in CdTe", Solid State Commun., vol. 44, pp. 1187–1190, 1982. | |
dc.relation.referencesen | [23] O. P. Malyk, "Electron scattering in Hg1-xCdxTe at high temperature", Ukr. J. Phys., vol. 35, pp. 1374–1376, 1990. | |
dc.relation.referencesen | [24] O. P. Malyk, "Nonelastic charge carrier scattering in mercury telluride", J. Alloys Compd., vol. 371/1-2 pp. 146–149, 2004. | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2022 | |
dc.subject | transport phenomena | |
dc.subject | CdTe | |
dc.subject | acceptor defects | |
dc.subject | ab initio calculation | |
dc.title | Transport Phenomena in Copper Doped Cadmium Telluride: Calculation from the First Principles | |
dc.title.alternative | Явища перенесення в телуриді кадмію, легованому міддю: розрахунок з перших принципів | |
dc.type | Article |