Numerical investigation of advection–diffusion in an inhomogeneous medium with a thin channel using the multiscale finite element method

dc.citation.epage157
dc.citation.issue1
dc.citation.spage146
dc.contributor.affiliationЛьвiвський нацiональний унiверситет iменi Iвана Франка
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorМазуряк, Н. В.
dc.contributor.authorСавула, Я. Г.
dc.contributor.authorMazuriak, N. V.
dc.contributor.authorSavula, Ya. H.
dc.date.accessioned2023-03-06T12:28:16Z
dc.date.available2023-03-06T12:28:16Z
dc.date.created2020-01-01
dc.date.issued2020-01-01
dc.description.abstractРозглянуто задачу адвекцiї–дифузiї в неоднорiдному середовищi з тонким каналом. До розв’язування цiєї задачi застовано рiзномасштабний метод скiнченних елементiв. Показано, що отриманий розв’язок є стiйким та збiжним для достатньо великих чисел Пекле. Наведено та проаналiзовано результати обчислювальних експериментiв.
dc.description.abstractThe advection-diffusion in an inhomogeneous medium with a thin channel is considered. The multiscale finite element method is applied to solving the formulated model problem. It is shown that the obtained solution is stable and convergent for sufficiently large Peclet numbers. Numerical examples are presented and analysed.
dc.format.extent146-157
dc.format.pages12
dc.identifier.citationMazuriak N. V. Numerical investigation of advection–diffusion in an inhomogeneous medium with a thin channel using the multiscale finite element method / Mazuriak N. V., Savula Ya. H. // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 146–157.
dc.identifier.citationenMazuriak N. V., Savula Ya. H. (2020) Numerical investigation of advection–diffusion in an inhomogeneous medium with a thin channel using the multiscale finite element method. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 146-157.
dc.identifier.doiDOI: 10.23939/mmc2020.01.146
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57509
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (7), 2020
dc.relation.references[1] Savula Ya. Numerical analysis of problems of mathematical physics by variational methods. Lviv, LNU(2004), (in Ukrainian).
dc.relation.references[2] Efendiev Y., Hou T. Multiscale finite element methods. Theory and application. New York, Springer– Verlag (2009).
dc.relation.references[3] Hou T., Wu X., Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation. 68 (227), 913–943 (1999).
dc.relation.references[4] Spodar N., Savula Ya. Application of multiscale finite element method for solving the one-dimensional advection-diffusion problem. Physico-mathematical modelling and informational technologies. 19, 190–197 (2014), (in Ukrainian).
dc.relation.references[5] Spodar N., Savula Ya. Application of multiscale finite element method for solving the advection-diffusion problems. Visnyk of the Lviv University. Series Applied mathematics and informatics. 24, 92–100 (2016),(in Ukrainian).
dc.relation.references[6] Spodar N., Savula Ya. Computational aspects of multiscale finite element method. Physico-mathematical modelling and informational technologies. 23, 169–177 (2016), (in Ukrainian).
dc.relation.references[7] Mazuriak N., Savula Ya. Numerical analysis of the advection-diffusion problems in thin curvilinear channel based on multiscale finite element method. Mathematical modeling and computing. 4 (1), 59–68 (2017).
dc.relation.references[8] Savula Ya. H., Koukharskyi V. M., Chaplia Ye. Ya. Numerical analysis of advection-diffusion in the continuum with thin canal. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology. 33 (3), 341–351 (1998).
dc.relation.references[9] Kukharskyy V., Kukharska N., Savula Ya. Application of Heterogeneous Mathematical Models for the Solving of Heat and Mass Transfer Problems in Environments with Thin Heterogeneties. Physico-mathematical modelling and informational technologies. 4, 132–141 (2006), (in Ukrainian).
dc.relation.references[10] Rashevskij P. Course of differential geometry. Moscow, Leningrad, State publishing house of technical and theoretical literature (1950), (in Russian).
dc.relation.referencesen[1] Savula Ya. Numerical analysis of problems of mathematical physics by variational methods. Lviv, LNU(2004), (in Ukrainian).
dc.relation.referencesen[2] Efendiev Y., Hou T. Multiscale finite element methods. Theory and application. New York, Springer– Verlag (2009).
dc.relation.referencesen[3] Hou T., Wu X., Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation. 68 (227), 913–943 (1999).
dc.relation.referencesen[4] Spodar N., Savula Ya. Application of multiscale finite element method for solving the one-dimensional advection-diffusion problem. Physico-mathematical modelling and informational technologies. 19, 190–197 (2014), (in Ukrainian).
dc.relation.referencesen[5] Spodar N., Savula Ya. Application of multiscale finite element method for solving the advection-diffusion problems. Visnyk of the Lviv University. Series Applied mathematics and informatics. 24, 92–100 (2016),(in Ukrainian).
dc.relation.referencesen[6] Spodar N., Savula Ya. Computational aspects of multiscale finite element method. Physico-mathematical modelling and informational technologies. 23, 169–177 (2016), (in Ukrainian).
dc.relation.referencesen[7] Mazuriak N., Savula Ya. Numerical analysis of the advection-diffusion problems in thin curvilinear channel based on multiscale finite element method. Mathematical modeling and computing. 4 (1), 59–68 (2017).
dc.relation.referencesen[8] Savula Ya. H., Koukharskyi V. M., Chaplia Ye. Ya. Numerical analysis of advection-diffusion in the continuum with thin canal. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology. 33 (3), 341–351 (1998).
dc.relation.referencesen[9] Kukharskyy V., Kukharska N., Savula Ya. Application of Heterogeneous Mathematical Models for the Solving of Heat and Mass Transfer Problems in Environments with Thin Heterogeneties. Physico-mathematical modelling and informational technologies. 4, 132–141 (2006), (in Ukrainian).
dc.relation.referencesen[10] Rashevskij P. Course of differential geometry. Moscow, Leningrad, State publishing house of technical and theoretical literature (1950), (in Russian).
dc.rights.holder©2020 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectрiзномасштабний метод скiнченних елементiв
dc.subjectадвекцiя-дифузiя
dc.subjectнеоднорiдне середовище
dc.subjectmultiscale finite element method
dc.subjectadvection-diffusion
dc.subjectinhomogeneous medium
dc.subject.udc65N55
dc.subject.udc65N30
dc.subject.udc80M25
dc.subject.udc80A20
dc.titleNumerical investigation of advection–diffusion in an inhomogeneous medium with a thin channel using the multiscale finite element method
dc.title.alternativeЧислове дослідження адвекції–дифузії в неоднорідному середовищі з тонким каналом різномасштабним методом скінченних елементів
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2020v7n1_Mazuriak_N_V-Numerical_investigation_146-157.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: