Physical sorption of molecular hydrogen by microporous organic polymers
dc.citation.epage | 94 | |
dc.citation.issue | 1 | |
dc.citation.spage | 85 | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Saldan, Ivan | |
dc.contributor.author | Stetsiv, Yuliia | |
dc.contributor.author | Makogon, Viktoriia | |
dc.contributor.author | Kovalyshyn, Yaroslav | |
dc.contributor.author | Yatsyshyn, Mykhaylo | |
dc.contributor.author | Reshetnyak, Oleksandr | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-03-02T10:50:11Z | |
dc.date.available | 2020-03-02T10:50:11Z | |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.description.abstract | В огляді описані зшиті та гіперзшиті полі- мери, як матеріали з високою площею поверхні для адсорбції великої кількості молекулярного водню. Зшиті поліанілін та поліпіррол використані як приклади адсорбції водню мікропо- ристими органічними полімерами. Висвітлено основну причину фізичної сорбції, що відбувається в мікропористих органічних полімерів, а також виклики на шляху налаштування значення ентальпії адсорбції водню в межах 15–20 кДж/моль Н2. | |
dc.description.abstract | The present work describes crosslinked and hypercrosslinked polymers viewed as high surface area materials to adsorb a large amount of molecular hydrogen. Crosslinked polyaniline and polypyrrole were used as examples of hydrogen adsorption by microporous organic polymers. The main reason for physical sorption happening in microporous organic polymers as well the challenges on the way to adjusting the value of hydrogen adsorption enthalpy within the range of 15-20 kJ·mol–1 H2 are highlighted. | |
dc.format.extent | 85-94 | |
dc.format.pages | 10 | |
dc.identifier.citation | Physical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94. | |
dc.identifier.citationen | Physical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46418 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (13), 2019 | |
dc.relation.references | 1. Callini E., Atakli Z., Hauback B. et al.: Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5 | |
dc.relation.references | 2. Klerke A., Christensen C., Nørskov J., Vegge T.: J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J | |
dc.relation.references | 3. Germain J., Frechet J., Svec F.: Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762 | |
dc.relation.references | 4. Zavaliy I., Yelon W., Zavalij P. et al.: J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9 | |
dc.relation.references | 5. Zavaliy I., Černý R., Kovalchuck I., Saldan I.: J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1 | |
dc.relation.references | 6. Saldan I., Frenzel J., Shekhah O. et al.: J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050 | |
dc.relation.references | 7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ | |
dc.relation.references | 8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0 | |
dc.relation.references | 9. Saldan I., Burtovyy R., Becker H.-W. et al.: Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002 | |
dc.relation.references | 10. Saldan I.: J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3 | |
dc.relation.references | 11. Sing K., Williams R.: Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 | |
dc.relation.references | 101. Germain J., Svec F., Frechet J.: Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r | |
dc.relation.references | 102. Fakirov S.: eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17 | |
dc.relation.references | 103. Broom D., Hirscher M.: Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/C6EE01435F | |
dc.relation.references | 12. Kaneko K., Shimizu K.: J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389 | |
dc.relation.references | 13. Germain J., Hradil J., Frechet J., Svec F.: Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p | |
dc.relation.references | 14. Bhatia S.: Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816 | |
dc.relation.references | 15. Wang Q., Johnson J.: J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114 | |
dc.relation.references | 16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017 | |
dc.relation.references | 17. Barrett E., Joyner L., Halenda P.: J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126 | |
dc.relation.references | 18. Texier-Mandoki N., Dentzer J., Piquero T. et al.: Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015 | |
dc.relation.references | 19. Gadiou R., Texier-Mandoki N., Piquero T. et al.: Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4 | |
dc.relation.references | 20. Marsh H., Rand B.: J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9 | |
dc.relation.references | 21. DubininM.: Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X | |
dc.relation.references | 22. Kaneko K.: J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X | |
dc.relation.references | 23. Tarazona P.: Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672 | |
dc.relation.references | 24. Horvath G., Kawazoe K.: J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470 | |
dc.relation.references | 25. Zhang C., Babonneau F., Bonhomme C. et al.: J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853 | |
dc.relation.references | 26. Liu Y., Kabbour H., Brown C. et al.: Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a | |
dc.relation.references | 27. Malbrunot P., Vidal D., Vermesse J. et al.: Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e | |
dc.relation.references | 28. Seidl J., Malinský J., Dušek K., HeitzW.: Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281 | |
dc.relation.references | 29. Rohr T., Knaus S., Gruber H., Sherrington D.: Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958 | |
dc.relation.references | 30. Maillardterrier M., Cazé C.: Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2 | |
dc.relation.references | 31. Nyhus A., Hagen S.: J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X | |
dc.relation.references | 32. Okay O.: Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0 | |
dc.relation.references | 33. Guyot A., BartholinM.: Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8 | |
dc.relation.references | 34. Sherrington D.: Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D | |
dc.relation.references | 35. Li W., Stover H.: J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R | |
dc.relation.references | 36. Cheng C., Micale F., Vanderhoff J., El Aasser M.: J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208 | |
dc.relation.references | 37. Svec F., Frechet J.: Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022 | |
dc.relation.references | 38. Germain J., Frechet J., Svec F.: J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A | |
dc.relation.references | 39. TsyurupaM., Davankov V.: React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6 | |
dc.relation.references | 40. Pavlova L., PavlovM., Davankov V.: Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022 | |
dc.relation.references | 41. Lee J., Wood C., Bradshaw D. et al.: Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H | |
dc.relation.references | 42. Germain J., Svec F., Fréchet J.: Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272. | |
dc.relation.references | 43. Cho S., Kwang S., Kim T., Choo K.: 224th ACS National Meeting. USA, Boston 2002, 47, 790. | |
dc.relation.references | 44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al.: Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004 | |
dc.relation.references | 45. Attia N., Lee S., Kim H., Geckeler K.: Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095 | |
dc.relation.references | 46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D.: Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e | |
dc.relation.references | 47. Virji S., Kaner R.: J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g | |
dc.relation.references | 48. Conn C., Sestak S., Baker A., Unsworth J.: Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1 | |
dc.relation.references | 49. Arsata R., Yub X., Li Y. et al.: Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028 | |
dc.relation.references | 50. Yatsyshyn М., Zastavs’ka G., Gnizdyukh Y.: Visnyk Lviv Univ., 2014, 55, 413. | |
dc.relation.references | 51. Stetsiv Yu., Halushchak І., Yatsyshyn М., Serkiz R.: Visnyk Lviv Univ., 2016, 57, 418. | |
dc.relation.references | 52. Stetsiv Yu., Yatsyshyn М., Demchenko P., Serkiz R.: Visnyk Lviv Univ., 2017, 58, 357. | |
dc.relation.references | 53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O.: [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472. | |
dc.relation.references | 54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P.: Arch. Appl. Sci. Res., 2011, 3, 147. | |
dc.relation.references | 55. Guo H., He W., Lu Y., Zhang X.: Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062 | |
dc.relation.references | 56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053 | |
dc.relation.references | 57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107 | |
dc.relation.references | 58. Ho K., McKay G., Yeung K.: Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084 | |
dc.relation.references | 59. Fung L., Mei F., Lun Y.: Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580 | |
dc.relation.references | 60. Xinqing C., Fung L., Qingjian Z. et al.: J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052 | |
dc.relation.references | 61. Fung L., Xinqing C., Mei F., Yeung K.: Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A | |
dc.relation.references | 62. Loh X., SairamM., Bismarck A. et al.: J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045 | |
dc.relation.references | 63. Yang C.-H., Wang T.-L., Shieh Y.-T.: Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014 | |
dc.relation.references | 64. Chandrakanthi N., CaremM.: Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579 | |
dc.relation.references | 65. Zhang J., Liu C., Shi G.: J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520 | |
dc.relation.references | 66. Bhadra S., Khastgir D.: Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013 | |
dc.relation.references | 67. BabazadehM.: Iran. Polym. J., 2007, 16, 389. | |
dc.relation.references | 68. Ding L., Wang X., Gregory R.: SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1 | |
dc.relation.references | 69. Bhadra S., Khastgir D.: Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002 | |
dc.relation.references | 70. Amano K., Ishikawa H., Kobayashi A. et al.: SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0 | |
dc.relation.references | 71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q | |
dc.relation.references | 72. Kieffel Y., Travers J., Ermolieff A., Rouchon D.: J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981 | |
dc.relation.references | 73. TrchovaM., Matejka P., Brodinova J. et al.: Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022 | |
dc.relation.references | 74. Mathew R., Mattes B., EspeM.: SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7 | |
dc.relation.references | 75. AyadM., Abu El-Nasr A.: J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w | |
dc.relation.references | 76. AyadM., Abu El-Nasr A., Stejskal J.: J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012 | |
dc.relation.references | 77. AyadM., Zaghlol S.: Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102 | |
dc.relation.references | 78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E.: Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012 | |
dc.relation.references | 79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381. | |
dc.relation.references | 80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035 | |
dc.relation.references | 81. Pham Q., Kim S.: Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y | |
dc.relation.references | 82. Stolarczyk A., Lapkowski M.: SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3 | |
dc.relation.references | 83. Hallik A., Alumaa A., Kurig H. et al.: SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017 | |
dc.relation.references | 84. Vernitskaya T., Efimov O.: Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261 | |
dc.relation.references | 85. Aleman C., Casanovas J., Torras J. et al.: Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039 | |
dc.relation.references | 86. Wang W., Li W., Ye J. et al.: SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010 | |
dc.relation.references | 87. Wysocka-ZołopaM., Winkler K.: Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005 | |
dc.relation.references | 88. Hakansson E., Lin T., Wang H., Kaynak A.: SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006 | |
dc.relation.references | 89. Wang X., Deng J., Duan X. et al.: Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040 | |
dc.relation.references | 90. Lang X., Wan Q., Feng C. et al.: SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023 | |
dc.relation.references | 91. Germain J., Frecheta J., Svec F.: Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C | |
dc.relation.references | 92. Lawal A., Wallace G.: Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023 | |
dc.relation.references | 93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027 | |
dc.relation.references | 94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060 | |
dc.relation.references | 95. Wood C., Tan B., Trewin A. et al.: Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a | |
dc.relation.references | 96. Buda C., Dunietz B.: J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r | |
dc.relation.references | 97. Rowsell J., Eckert J., Yaghi O.: J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690 | |
dc.relation.references | 98. Lochan R., Head-GordonM.: Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j | |
dc.relation.references | 99. Li Y., Yang R.: J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m | |
dc.relation.references | 100. Jiang J., Su F., Trewin A. et al.: J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176 | |
dc.relation.referencesen | 1. Callini E., Atakli Z., Hauback B. et al., Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5 | |
dc.relation.referencesen | 2. Klerke A., Christensen C., Nørskov J., Vegge T., J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J | |
dc.relation.referencesen | 3. Germain J., Frechet J., Svec F., Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762 | |
dc.relation.referencesen | 4. Zavaliy I., Yelon W., Zavalij P. et al., J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9 | |
dc.relation.referencesen | 5. Zavaliy I., Černý R., Kovalchuck I., Saldan I., J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1 | |
dc.relation.referencesen | 6. Saldan I., Frenzel J., Shekhah O. et al., J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050 | |
dc.relation.referencesen | 7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ | |
dc.relation.referencesen | 8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0 | |
dc.relation.referencesen | 9. Saldan I., Burtovyy R., Becker H.-W. et al., Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002 | |
dc.relation.referencesen | 10. Saldan I., J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3 | |
dc.relation.referencesen | 11. Sing K., Williams R., Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 | |
dc.relation.referencesen | 101. Germain J., Svec F., Frechet J., Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r | |
dc.relation.referencesen | 102. Fakirov S., eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17 | |
dc.relation.referencesen | 103. Broom D., Hirscher M., Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/P.6EE01435F | |
dc.relation.referencesen | 12. Kaneko K., Shimizu K., J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389 | |
dc.relation.referencesen | 13. Germain J., Hradil J., Frechet J., Svec F., Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p | |
dc.relation.referencesen | 14. Bhatia S., Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816 | |
dc.relation.referencesen | 15. Wang Q., Johnson J., J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114 | |
dc.relation.referencesen | 16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017 | |
dc.relation.referencesen | 17. Barrett E., Joyner L., Halenda P., J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126 | |
dc.relation.referencesen | 18. Texier-Mandoki N., Dentzer J., Piquero T. et al., Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015 | |
dc.relation.referencesen | 19. Gadiou R., Texier-Mandoki N., Piquero T. et al., Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4 | |
dc.relation.referencesen | 20. Marsh H., Rand B., J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9 | |
dc.relation.referencesen | 21. DubininM., Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X | |
dc.relation.referencesen | 22. Kaneko K., J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X | |
dc.relation.referencesen | 23. Tarazona P., Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672 | |
dc.relation.referencesen | 24. Horvath G., Kawazoe K., J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470 | |
dc.relation.referencesen | 25. Zhang C., Babonneau F., Bonhomme C. et al., J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853 | |
dc.relation.referencesen | 26. Liu Y., Kabbour H., Brown C. et al., Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a | |
dc.relation.referencesen | 27. Malbrunot P., Vidal D., Vermesse J. et al., Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e | |
dc.relation.referencesen | 28. Seidl J., Malinský J., Dušek K., HeitzW., Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281 | |
dc.relation.referencesen | 29. Rohr T., Knaus S., Gruber H., Sherrington D., Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958 | |
dc.relation.referencesen | 30. Maillardterrier M., Cazé C., Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2 | |
dc.relation.referencesen | 31. Nyhus A., Hagen S., J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X | |
dc.relation.referencesen | 32. Okay O., Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0 | |
dc.relation.referencesen | 33. Guyot A., BartholinM., Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8 | |
dc.relation.referencesen | 34. Sherrington D., Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D | |
dc.relation.referencesen | 35. Li W., Stover H., J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R | |
dc.relation.referencesen | 36. Cheng C., Micale F., Vanderhoff J., El Aasser M., J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208 | |
dc.relation.referencesen | 37. Svec F., Frechet J., Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022 | |
dc.relation.referencesen | 38. Germain J., Frechet J., Svec F., J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A | |
dc.relation.referencesen | 39. TsyurupaM., Davankov V., React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6 | |
dc.relation.referencesen | 40. Pavlova L., PavlovM., Davankov V., Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022 | |
dc.relation.referencesen | 41. Lee J., Wood C., Bradshaw D. et al., Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H | |
dc.relation.referencesen | 42. Germain J., Svec F., Fréchet J., Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272. | |
dc.relation.referencesen | 43. Cho S., Kwang S., Kim T., Choo K., 224th ACS National Meeting. USA, Boston 2002, 47, 790. | |
dc.relation.referencesen | 44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al., Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004 | |
dc.relation.referencesen | 45. Attia N., Lee S., Kim H., Geckeler K., Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095 | |
dc.relation.referencesen | 46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D., Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e | |
dc.relation.referencesen | 47. Virji S., Kaner R., J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g | |
dc.relation.referencesen | 48. Conn C., Sestak S., Baker A., Unsworth J., Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1 | |
dc.relation.referencesen | 49. Arsata R., Yub X., Li Y. et al., Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028 | |
dc.relation.referencesen | 50. Yatsyshyn M., Zastavs’ka G., Gnizdyukh Y., Visnyk Lviv Univ., 2014, 55, 413. | |
dc.relation.referencesen | 51. Stetsiv Yu., Halushchak I., Yatsyshyn M., Serkiz R., Visnyk Lviv Univ., 2016, 57, 418. | |
dc.relation.referencesen | 52. Stetsiv Yu., Yatsyshyn M., Demchenko P., Serkiz R., Visnyk Lviv Univ., 2017, 58, 357. | |
dc.relation.referencesen | 53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O., [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472. | |
dc.relation.referencesen | 54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P., Arch. Appl. Sci. Res., 2011, 3, 147. | |
dc.relation.referencesen | 55. Guo H., He W., Lu Y., Zhang X., Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062 | |
dc.relation.referencesen | 56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053 | |
dc.relation.referencesen | 57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107 | |
dc.relation.referencesen | 58. Ho K., McKay G., Yeung K., Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084 | |
dc.relation.referencesen | 59. Fung L., Mei F., Lun Y., Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580 | |
dc.relation.referencesen | 60. Xinqing C., Fung L., Qingjian Z. et al., J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052 | |
dc.relation.referencesen | 61. Fung L., Xinqing C., Mei F., Yeung K., Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A | |
dc.relation.referencesen | 62. Loh X., SairamM., Bismarck A. et al., J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045 | |
dc.relation.referencesen | 63. Yang C.-H., Wang T.-L., Shieh Y.-T., Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014 | |
dc.relation.referencesen | 64. Chandrakanthi N., CaremM., Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579 | |
dc.relation.referencesen | 65. Zhang J., Liu C., Shi G., J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520 | |
dc.relation.referencesen | 66. Bhadra S., Khastgir D., Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013 | |
dc.relation.referencesen | 67. BabazadehM., Iran. Polym. J., 2007, 16, 389. | |
dc.relation.referencesen | 68. Ding L., Wang X., Gregory R., SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1 | |
dc.relation.referencesen | 69. Bhadra S., Khastgir D., Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002 | |
dc.relation.referencesen | 70. Amano K., Ishikawa H., Kobayashi A. et al., SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0 | |
dc.relation.referencesen | 71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q | |
dc.relation.referencesen | 72. Kieffel Y., Travers J., Ermolieff A., Rouchon D., J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981 | |
dc.relation.referencesen | 73. TrchovaM., Matejka P., Brodinova J. et al., Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022 | |
dc.relation.referencesen | 74. Mathew R., Mattes B., EspeM., SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7 | |
dc.relation.referencesen | 75. AyadM., Abu El-Nasr A., J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w | |
dc.relation.referencesen | 76. AyadM., Abu El-Nasr A., Stejskal J., J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012 | |
dc.relation.referencesen | 77. AyadM., Zaghlol S., Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102 | |
dc.relation.referencesen | 78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E., Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012 | |
dc.relation.referencesen | 79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381. | |
dc.relation.referencesen | 80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035 | |
dc.relation.referencesen | 81. Pham Q., Kim S., Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y | |
dc.relation.referencesen | 82. Stolarczyk A., Lapkowski M., SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3 | |
dc.relation.referencesen | 83. Hallik A., Alumaa A., Kurig H. et al., SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017 | |
dc.relation.referencesen | 84. Vernitskaya T., Efimov O., Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261 | |
dc.relation.referencesen | 85. Aleman C., Casanovas J., Torras J. et al., Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039 | |
dc.relation.referencesen | 86. Wang W., Li W., Ye J. et al., SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010 | |
dc.relation.referencesen | 87. Wysocka-ZołopaM., Winkler K., Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005 | |
dc.relation.referencesen | 88. Hakansson E., Lin T., Wang H., Kaynak A., SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006 | |
dc.relation.referencesen | 89. Wang X., Deng J., Duan X. et al., Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040 | |
dc.relation.referencesen | 90. Lang X., Wan Q., Feng C. et al., SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023 | |
dc.relation.referencesen | 91. Germain J., Frecheta J., Svec F., Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C | |
dc.relation.referencesen | 92. Lawal A., Wallace G., Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023 | |
dc.relation.referencesen | 93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027 | |
dc.relation.referencesen | 94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060 | |
dc.relation.referencesen | 95. Wood C., Tan B., Trewin A. et al., Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a | |
dc.relation.referencesen | 96. Buda C., Dunietz B., J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r | |
dc.relation.referencesen | 97. Rowsell J., Eckert J., Yaghi O., J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690 | |
dc.relation.referencesen | 98. Lochan R., Head-GordonM., Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j | |
dc.relation.referencesen | 99. Li Y., Yang R., J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m | |
dc.relation.referencesen | 100. Jiang J., Su F., Trewin A. et al., J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176 | |
dc.relation.uri | https://doi.org/10.1007/s00339-016-9881-5 | |
dc.relation.uri | https://doi.org/10.1039/B720020J | |
dc.relation.uri | https://doi.org/10.1002/smll.200801762 | |
dc.relation.uri | https://doi.org/10.1016/S0925-8388(00)00899-9 | |
dc.relation.uri | https://doi.org/10.1016/S0925-8388(03)00376-1 | |
dc.relation.uri | https://doi.org/10.1016/j.jallcom.2008.03.050 | |
dc.relation.uri | https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ | |
dc.relation.uri | https://doi.org/10.1007/s11003-006-0127-0 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2008.09.002 | |
dc.relation.uri | https://doi.org/10.1007/s10008-009-0974-3 | |
dc.relation.uri | https://doi.org/10.1260/0263617053499032 | |
dc.relation.uri | https://doi.org/10.1063/1.463389 | |
dc.relation.uri | https://doi.org/10.1021/cm061186p | |
dc.relation.uri | https://doi.org/10.1021/la0523816 | |
dc.relation.uri | https://doi.org/10.1063/1.478114 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2014.08.017 | |
dc.relation.uri | https://doi.org/10.1021/ja01145a126 | |
dc.relation.uri | https://doi.org/10.1016/j.carbon.2004.05.015 | |
dc.relation.uri | https://doi.org/10.1007/s10450-005-6030-4 | |
dc.relation.uri | https://doi.org/10.1016/0021-9797(70)90077-9 | |
dc.relation.uri | https://doi.org/10.1016/0008-6223(89)90078-X | |
dc.relation.uri | https://doi.org/10.1016/0376-7388(94)00126-X | |
dc.relation.uri | https://doi.org/10.1103/PhysRevA.31.2672 | |
dc.relation.uri | https://doi.org/10.1252/jcej.16.470 | |
dc.relation.uri | https://doi.org/10.1021/ja9808853 | |
dc.relation.uri | https://doi.org/10.1021/la703864a | |
dc.relation.uri | https://doi.org/10.1021/la950969e | |
dc.relation.uri | https://doi.org/10.1007/BFb0051281 | |
dc.relation.uri | https://doi.org/10.1021/ma0110958 | |
dc.relation.uri | https://doi.org/10.1016/0014-3057(84)90195-2 | |
dc.relation.uri | https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X | |
dc.relation.uri | https://doi.org/10.1016/S0079-6700(00)00015-0 | |
dc.relation.uri | https://doi.org/10.1016/0079-6700(82)90002-8 | |
dc.relation.uri | https://doi.org/10.1039/A803757D | |
dc.relation.uri | https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R | |
dc.relation.uri | https://doi.org/10.1002/pola.1992.080300208 | |
dc.relation.uri | https://doi.org/10.1021/ac00031a022 | |
dc.relation.uri | https://doi.org/10.1039/B711509A | |
dc.relation.uri | https://doi.org/10.1016/S1381-5148(02)00173-6 | |
dc.relation.uri | https://doi.org/10.1134/S0012500806010022 | |
dc.relation.uri | https://doi.org/10.1039/B604625H | |
dc.relation.uri | https://doi.org/10.1016/j.synthmet.2005.05.004 | |
dc.relation.uri | https://doi.org/10.1002/er.3095 | |
dc.relation.uri | https://doi.org/10.1021/cm401978e | |
dc.relation.uri | https://doi.org/10.1021/jp063166g | |
dc.relation.uri | https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1 | |
dc.relation.uri | https://doi.org/10.1016/j.snb.2009.01.028 | |
dc.relation.uri | https://doi.org/10.1016/j.carbon.2015.03.062 | |
dc.relation.uri | https://doi.org/10.1016/j.matlet.2015.10.053 | |
dc.relation.uri | https://doi.org/10.1016/j.matlet.2017.10.107 | |
dc.relation.uri | https://doi.org/10.1021/la0267084 | |
dc.relation.uri | https://doi.org/10.1007/BF03215580 | |
dc.relation.uri | https://doi.org/10.1021/jp9018052 | |
dc.relation.uri | https://doi.org/10.1039/B719961A | |
dc.relation.uri | https://doi.org/10.1016/j.memsci.2008.10.045 | |
dc.relation.uri | https://doi.org/10.1016/j.elecom.2008.12.014 | |
dc.relation.uri | https://doi.org/10.1007/s002890050579 | |
dc.relation.uri | https://doi.org/10.1002/app.21520 | |
dc.relation.uri | https://doi.org/10.1016/j.polymdegradstab.2008.03.013 | |
dc.relation.uri | https://doi.org/10.1016/S0379-6779(99)00035-1 | |
dc.relation.uri | https://doi.org/10.1016/j.polymertesting.2008.07.002 | |
dc.relation.uri | https://doi.org/10.1016/0379-6779(94)90210-0 | |
dc.relation.uri | https://doi.org/10.1021/ma990801q | |
dc.relation.uri | https://doi.org/10.1002/app.10981 | |
dc.relation.uri | https://doi.org/10.1016/j.polymdegradstab.2005.04.022 | |
dc.relation.uri | https://doi.org/10.1016/S0379-6779(02)00177-7 | |
dc.relation.uri | https://doi.org/10.1021/jp103780w | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2012.05.012 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2012.07.102 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2006.07.012 | |
dc.relation.uri | https://doi.org/10.1016/j.matchemphys.2013.12.035 | |
dc.relation.uri | https://doi.org/10.1007/s11814-015-0122-y | |
dc.relation.uri | https://doi.org/10.1016/S0379-6779(00)01453-3 | |
dc.relation.uri | https://doi.org/10.1016/j.synthmet.2007.10.017 | |
dc.relation.uri | https://doi.org/10.1070/RC1997v066n05ABEH000261 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2007.12.039 | |
dc.relation.uri | https://doi.org/10.1016/j.synthmet.2010.08.010 | |
dc.relation.uri | https://doi.org/10.1016/j.electacta.2017.12.005 | |
dc.relation.uri | https://doi.org/10.1016/j.synthmet.2006.08.006 | |
dc.relation.uri | https://doi.org/10.1016/j.apenergy.2014.10.040 | |
dc.relation.uri | https://doi.org/10.1016/j.synthmet.2010.06.023 | |
dc.relation.uri | https://doi.org/10.1039/B821233C | |
dc.relation.uri | https://doi.org/10.1016/j.talanta.2013.10.023 | |
dc.relation.uri | https://doi.org/10.1016/j.matchemphys.2015.10.027 | |
dc.relation.uri | https://doi.org/10.1002/marc.201300060 | |
dc.relation.uri | https://doi.org/10.1021/cm070356a | |
dc.relation.uri | https://doi.org/10.1021/jp061249r | |
dc.relation.uri | https://doi.org/10.1021/ja0542690 | |
dc.relation.uri | https://doi.org/10.1039/b515409j | |
dc.relation.uri | https://doi.org/10.1021/ja061681m | |
dc.relation.uri | https://doi.org/10.1021/ja8010176 | |
dc.relation.uri | https://doi.org/10.1021/cm802157r | |
dc.relation.uri | https://doi.org/10.3144/expresspolymlett.2017.17 | |
dc.relation.uri | https://doi.org/10.1039/C6EE01435F | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Saldan I., Stetsiv Yu., Makogon V., Kovalyshyn Ya., Yatsyshyn M., Reshetnyak O., 2019 | |
dc.subject | гіперзшиті полімери | |
dc.subject | мікропористі матеріали | |
dc.subject | фізична сорбція | |
dc.subject | ентальпія адсорбції водню | |
dc.subject | hypercrosslinked polymers | |
dc.subject | microporous materials | |
dc.subject | physical sorption | |
dc.subject | hydrogen adsorption enthalpy | |
dc.title | Physical sorption of molecular hydrogen by microporous organic polymers | |
dc.title.alternative | Фізична сорбція молекулярного водню мікропористими органічними полімерами | |
dc.type | Article |
Files
License bundle
1 - 1 of 1