Physical sorption of molecular hydrogen by microporous organic polymers

dc.citation.epage94
dc.citation.issue1
dc.citation.spage85
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorSaldan, Ivan
dc.contributor.authorStetsiv, Yuliia
dc.contributor.authorMakogon, Viktoriia
dc.contributor.authorKovalyshyn, Yaroslav
dc.contributor.authorYatsyshyn, Mykhaylo
dc.contributor.authorReshetnyak, Oleksandr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T10:50:11Z
dc.date.available2020-03-02T10:50:11Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractВ огляді описані зшиті та гіперзшиті полі- мери, як матеріали з високою площею поверхні для адсорбції великої кількості молекулярного водню. Зшиті поліанілін та поліпіррол використані як приклади адсорбції водню мікропо- ристими органічними полімерами. Висвітлено основну причину фізичної сорбції, що відбувається в мікропористих органічних полімерів, а також виклики на шляху налаштування значення ентальпії адсорбції водню в межах 15–20 кДж/моль Н2.
dc.description.abstractThe present work describes crosslinked and hypercrosslinked polymers viewed as high surface area materials to adsorb a large amount of molecular hydrogen. Crosslinked polyaniline and polypyrrole were used as examples of hydrogen adsorption by microporous organic polymers. The main reason for physical sorption happening in microporous organic polymers as well the challenges on the way to adjusting the value of hydrogen adsorption enthalpy within the range of 15-20 kJ·mol–1 H2 are highlighted.
dc.format.extent85-94
dc.format.pages10
dc.identifier.citationPhysical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94.
dc.identifier.citationenPhysical sorption of molecular hydrogen by microporous organic polymers / Ivan Saldan, Yuliia Stetsiv, Viktoriia Makogon, Yaroslav Kovalyshyn, Mykhaylo Yatsyshyn, Oleksandr Reshetnyak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 85–94.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46418
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (13), 2019
dc.relation.references1. Callini E., Atakli Z., Hauback B. et al.: Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5
dc.relation.references2. Klerke A., Christensen C., Nørskov J., Vegge T.: J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J
dc.relation.references3. Germain J., Frechet J., Svec F.: Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762
dc.relation.references4. Zavaliy I., Yelon W., Zavalij P. et al.: J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9
dc.relation.references5. Zavaliy I., Černý R., Kovalchuck I., Saldan I.: J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1
dc.relation.references6. Saldan I., Frenzel J., Shekhah O. et al.: J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050
dc.relation.references7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ
dc.relation.references8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0
dc.relation.references9. Saldan I., Burtovyy R., Becker H.-W. et al.: Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002
dc.relation.references10. Saldan I.: J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3
dc.relation.references11. Sing K., Williams R.: Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
dc.relation.references101. Germain J., Svec F., Frechet J.: Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r
dc.relation.references102. Fakirov S.: eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17
dc.relation.references103. Broom D., Hirscher M.: Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/C6EE01435F
dc.relation.references12. Kaneko K., Shimizu K.: J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389
dc.relation.references13. Germain J., Hradil J., Frechet J., Svec F.: Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p
dc.relation.references14. Bhatia S.: Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816
dc.relation.references15. Wang Q., Johnson J.: J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114
dc.relation.references16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017
dc.relation.references17. Barrett E., Joyner L., Halenda P.: J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126
dc.relation.references18. Texier-Mandoki N., Dentzer J., Piquero T. et al.: Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015
dc.relation.references19. Gadiou R., Texier-Mandoki N., Piquero T. et al.: Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4
dc.relation.references20. Marsh H., Rand B.: J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9
dc.relation.references21. DubininM.: Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X
dc.relation.references22. Kaneko K.: J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X
dc.relation.references23. Tarazona P.: Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672
dc.relation.references24. Horvath G., Kawazoe K.: J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470
dc.relation.references25. Zhang C., Babonneau F., Bonhomme C. et al.: J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853
dc.relation.references26. Liu Y., Kabbour H., Brown C. et al.: Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a
dc.relation.references27. Malbrunot P., Vidal D., Vermesse J. et al.: Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e
dc.relation.references28. Seidl J., Malinský J., Dušek K., HeitzW.: Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281
dc.relation.references29. Rohr T., Knaus S., Gruber H., Sherrington D.: Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958
dc.relation.references30. Maillardterrier M., Cazé C.: Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2
dc.relation.references31. Nyhus A., Hagen S.: J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X
dc.relation.references32. Okay O.: Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0
dc.relation.references33. Guyot A., BartholinM.: Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8
dc.relation.references34. Sherrington D.: Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D
dc.relation.references35. Li W., Stover H.: J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
dc.relation.references36. Cheng C., Micale F., Vanderhoff J., El Aasser M.: J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208
dc.relation.references37. Svec F., Frechet J.: Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022
dc.relation.references38. Germain J., Frechet J., Svec F.: J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A
dc.relation.references39. TsyurupaM., Davankov V.: React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6
dc.relation.references40. Pavlova L., PavlovM., Davankov V.: Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022
dc.relation.references41. Lee J., Wood C., Bradshaw D. et al.: Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H
dc.relation.references42. Germain J., Svec F., Fréchet J.: Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272.
dc.relation.references43. Cho S., Kwang S., Kim T., Choo K.: 224th ACS National Meeting. USA, Boston 2002, 47, 790.
dc.relation.references44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al.: Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004
dc.relation.references45. Attia N., Lee S., Kim H., Geckeler K.: Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095
dc.relation.references46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D.: Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e
dc.relation.references47. Virji S., Kaner R.: J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g
dc.relation.references48. Conn C., Sestak S., Baker A., Unsworth J.: Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1
dc.relation.references49. Arsata R., Yub X., Li Y. et al.: Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028
dc.relation.references50. Yatsyshyn М., Zastavs’ka G., Gnizdyukh Y.: Visnyk Lviv Univ., 2014, 55, 413.
dc.relation.references51. Stetsiv Yu., Halushchak І., Yatsyshyn М., Serkiz R.: Visnyk Lviv Univ., 2016, 57, 418.
dc.relation.references52. Stetsiv Yu., Yatsyshyn М., Demchenko P., Serkiz R.: Visnyk Lviv Univ., 2017, 58, 357.
dc.relation.references53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O.: [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472.
dc.relation.references54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P.: Arch. Appl. Sci. Res., 2011, 3, 147.
dc.relation.references55. Guo H., He W., Lu Y., Zhang X.: Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062
dc.relation.references56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053
dc.relation.references57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107
dc.relation.references58. Ho K., McKay G., Yeung K.: Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084
dc.relation.references59. Fung L., Mei F., Lun Y.: Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580
dc.relation.references60. Xinqing C., Fung L., Qingjian Z. et al.: J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052
dc.relation.references61. Fung L., Xinqing C., Mei F., Yeung K.: Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A
dc.relation.references62. Loh X., SairamM., Bismarck A. et al.: J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045
dc.relation.references63. Yang C.-H., Wang T.-L., Shieh Y.-T.: Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014
dc.relation.references64. Chandrakanthi N., CaremM.: Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579
dc.relation.references65. Zhang J., Liu C., Shi G.: J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520
dc.relation.references66. Bhadra S., Khastgir D.: Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013
dc.relation.references67. BabazadehM.: Iran. Polym. J., 2007, 16, 389.
dc.relation.references68. Ding L., Wang X., Gregory R.: SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1
dc.relation.references69. Bhadra S., Khastgir D.: Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002
dc.relation.references70. Amano K., Ishikawa H., Kobayashi A. et al.: SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0
dc.relation.references71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q
dc.relation.references72. Kieffel Y., Travers J., Ermolieff A., Rouchon D.: J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981
dc.relation.references73. TrchovaM., Matejka P., Brodinova J. et al.: Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022
dc.relation.references74. Mathew R., Mattes B., EspeM.: SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7
dc.relation.references75. AyadM., Abu El-Nasr A.: J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w
dc.relation.references76. AyadM., Abu El-Nasr A., Stejskal J.: J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012
dc.relation.references77. AyadM., Zaghlol S.: Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102
dc.relation.references78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E.: Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012
dc.relation.references79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381.
dc.relation.references80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035
dc.relation.references81. Pham Q., Kim S.: Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y
dc.relation.references82. Stolarczyk A., Lapkowski M.: SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3
dc.relation.references83. Hallik A., Alumaa A., Kurig H. et al.: SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017
dc.relation.references84. Vernitskaya T., Efimov O.: Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261
dc.relation.references85. Aleman C., Casanovas J., Torras J. et al.: Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039
dc.relation.references86. Wang W., Li W., Ye J. et al.: SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010
dc.relation.references87. Wysocka-ZołopaM., Winkler K.: Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005
dc.relation.references88. Hakansson E., Lin T., Wang H., Kaynak A.: SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006
dc.relation.references89. Wang X., Deng J., Duan X. et al.: Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040
dc.relation.references90. Lang X., Wan Q., Feng C. et al.: SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023
dc.relation.references91. Germain J., Frecheta J., Svec F.: Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C
dc.relation.references92. Lawal A., Wallace G.: Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023
dc.relation.references93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027
dc.relation.references94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060
dc.relation.references95. Wood C., Tan B., Trewin A. et al.: Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a
dc.relation.references96. Buda C., Dunietz B.: J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r
dc.relation.references97. Rowsell J., Eckert J., Yaghi O.: J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690
dc.relation.references98. Lochan R., Head-GordonM.: Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j
dc.relation.references99. Li Y., Yang R.: J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m
dc.relation.references100. Jiang J., Su F., Trewin A. et al.: J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176
dc.relation.referencesen1. Callini E., Atakli Z., Hauback B. et al., Appl. Phys. A, 2016, 122, 353. https://doi.org/10.1007/s00339-016-9881-5
dc.relation.referencesen2. Klerke A., Christensen C., Nørskov J., Vegge T., J. Mater. Chem., 2008, 18, 2304. https://doi.org/10.1039/B720020J
dc.relation.referencesen3. Germain J., Frechet J., Svec F., Small, 2009, 5, 1098. https://doi.org/10.1002/smll.200801762
dc.relation.referencesen4. Zavaliy I., Yelon W., Zavalij P. et al., J. Alloy. Compd., 2000, 309, 75. https://doi.org/10.1016/S0925-8388(00)00899-9
dc.relation.referencesen5. Zavaliy I., Černý R., Kovalchuck I., Saldan I., J. Alloy. Compd., 2003, 360, 173. https://doi.org/10.1016/S0925-8388(03)00376-1
dc.relation.referencesen6. Saldan I., Frenzel J., Shekhah O. et al., J. Alloy. Compd., 2009, 470, 568. https://doi.org/10.1016/j.jallcom.2008.03.050
dc.relation.referencesen7. Saldan I., Kovalchuk I., Zavalii I.:Mater. Sci., 2003, 39, 545. https://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ
dc.relation.referencesen8. Saldan I., Dubov Yu., Ryabov O., Zavalii I.:Mater. Sci., 2006, 42, 634. https://doi.org/10.1007/s11003-006-0127-0
dc.relation.referencesen9. Saldan I., Burtovyy R., Becker H.-W. et al., Int. J. Hydrogen Energ., 2008, 33, 7177. https://doi.org/10.1016/j.ijhydene.2008.09.002
dc.relation.referencesen10. Saldan I., J. Solid State Electrochem., 2010, 14, 1339. https://doi.org/10.1007/s10008-009-0974-3
dc.relation.referencesen11. Sing K., Williams R., Adsorp. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032
dc.relation.referencesen101. Germain J., Svec F., Frechet J., Chem. Mater., 2008, 20, 7069. https://doi.org/10.1021/cm802157r
dc.relation.referencesen102. Fakirov S., eXPRESS Polym. Lett., 2017, 11, 162. https://doi.org/10.3144/expresspolymlett.2017.17
dc.relation.referencesen103. Broom D., Hirscher M., Energ. Environ. Sci., 2016, 9, 3368. https://doi.org/10.1039/P.6EE01435F
dc.relation.referencesen12. Kaneko K., Shimizu K., J. Chem. Phys., 1992, 97, 8705. https://doi.org/10.1063/1.463389
dc.relation.referencesen13. Germain J., Hradil J., Frechet J., Svec F., Chem. Mater., 2006, 18, 4430. https://doi.org/10.1021/cm061186p
dc.relation.referencesen14. Bhatia S., Langmuir, 2006, 22, 1688. https://doi.org/10.1021/la0523816
dc.relation.referencesen15. Wang Q., Johnson J., J. Chem. Phys., 1999, 110, 577. https://doi.org/10.1063/1.478114
dc.relation.referencesen16. Villarroel-Rocha J., Barrera D., Sapag K.:Micropor. Mesopor. Mat., 2014, 200, 68. https://doi.org/10.1016/j.micromeso.2014.08.017
dc.relation.referencesen17. Barrett E., Joyner L., Halenda P., J. Am. Chem. Soc., 1951, 73, 373. https://doi.org/10.1021/ja01145a126
dc.relation.referencesen18. Texier-Mandoki N., Dentzer J., Piquero T. et al., Carbon, 2004, 42, 2744. https://doi.org/10.1016/j.carbon.2004.05.015
dc.relation.referencesen19. Gadiou R., Texier-Mandoki N., Piquero T. et al., Adsorption, 2005, 11, 823. https://doi.org/10.1007/s10450-005-6030-4
dc.relation.referencesen20. Marsh H., Rand B., J. Colloid Interf. Sci., 1970, 33, 101. https://doi.org/10.1016/0021-9797(70)90077-9
dc.relation.referencesen21. DubininM., Carbon, 1989, 27, 457. https://doi.org/10.1016/0008-6223(89)90078-X
dc.relation.referencesen22. Kaneko K., J. Membrane Sci., 1994, 96, 59. https://doi.org/10.1016/0376-7388(94)00126-X
dc.relation.referencesen23. Tarazona P., Phys. Rev. A, 2006, 31, 2672. https://doi.org/10.1103/PhysRevA.31.2672
dc.relation.referencesen24. Horvath G., Kawazoe K., J. Chem. Eng. Jpn., 1983, 16, 470. https://doi.org/10.1252/jcej.16.470
dc.relation.referencesen25. Zhang C., Babonneau F., Bonhomme C. et al., J. Am. Chem. Soc., 1998, 120, 8380. https://doi.org/10.1021/ja9808853
dc.relation.referencesen26. Liu Y., Kabbour H., Brown C. et al., Langmuir, 2008, 24, 4772. https://doi.org/10.1021/la703864a
dc.relation.referencesen27. Malbrunot P., Vidal D., Vermesse J. et al., Langmuir, 1997, 13, 539. https://doi.org/10.1021/la950969e
dc.relation.referencesen28. Seidl J., Malinský J., Dušek K., HeitzW., Adv. Polym. Sci., 1967, 5, 113. https://doi.org/10.1007/BFb0051281
dc.relation.referencesen29. Rohr T., Knaus S., Gruber H., Sherrington D., Macromolecules, 2002, 35, 97. https://doi.org/10.1021/ma0110958
dc.relation.referencesen30. Maillardterrier M., Cazé C., Eur. Polym. J., 1984, 20, 113. https://doi.org/10.1016/0014-3057(84)90195-2
dc.relation.referencesen31. Nyhus A., Hagen S., J. Polym. Sci. A, 1999, 37, 3973. https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X
dc.relation.referencesen32. Okay O., Prog. Polym. Sci., 2000, 25, 711. https://doi.org/10.1016/S0079-6700(00)00015-0
dc.relation.referencesen33. Guyot A., BartholinM., Prog. Polym. Sci., 2008, 8, 277. https://doi.org/10.1016/0079-6700(82)90002-8
dc.relation.referencesen34. Sherrington D., Chem. Commun., 1998, 21, 2275. https://doi.org/10.1039/A803757D
dc.relation.referencesen35. Li W., Stover H., J. Polym. Sci. A, 1998, 36, 1543. https://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
dc.relation.referencesen36. Cheng C., Micale F., Vanderhoff J., El Aasser M., J. Polym. Sci. A, 1992, 30, 235. https://doi.org/10.1002/pola.1992.080300208
dc.relation.referencesen37. Svec F., Frechet J., Anal. Chem., 1992, 54, 820. https://doi.org/10.1021/ac00031a022
dc.relation.referencesen38. Germain J., Frechet J., Svec F., J. Mater. Chem., 2007, 17, 4989. https://doi.org/10.1039/B711509A
dc.relation.referencesen39. TsyurupaM., Davankov V., React. Funct. Polym., 2002, 53, 193. https://doi.org/10.1016/S1381-5148(02)00173-6
dc.relation.referencesen40. Pavlova L., PavlovM., Davankov V., Dokl. Chem., 2006, 406, 6. https://doi.org/10.1134/S0012500806010022
dc.relation.referencesen41. Lee J., Wood C., Bradshaw D. et al., Chem. Commun., 2006, 2670. https://doi.org/10.1039/B604625H
dc.relation.referencesen42. Germain J., Svec F., Fréchet J., Proceedings of aMassachusetts Meeting. PolymericMaterials: Science and Engineering Preprints. USA, Boston 2007, 97, 272.
dc.relation.referencesen43. Cho S., Kwang S., Kim T., Choo K., 224th ACS National Meeting. USA, Boston 2002, 47, 790.
dc.relation.referencesen44. Panella B., Kossykh L., Dettlaff-Weglikowsa U. et al., Synth. Met., 2005, 151, 208. https://doi.org/10.1016/j.synthmet.2005.05.004
dc.relation.referencesen45. Attia N., Lee S., Kim H., Geckeler K., Int. J. Energ. Res., 2014, 38, 466. https://doi.org/10.1002/er.3095
dc.relation.referencesen46. Goldsmith J., Wong-Foy A., CafarellaM., Siegel D., Chem. Mater., 2013, 25, 3373. https://doi.org/10.1021/cm401978e
dc.relation.referencesen47. Virji S., Kaner R., J. Phys. Chem. B, 2006, 110, 22266. https://doi.org/10.1021/jp063166g
dc.relation.referencesen48. Conn C., Sestak S., Baker A., Unsworth J., Electroanal., 1998, 10, 1137. https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1
dc.relation.referencesen49. Arsata R., Yub X., Li Y. et al., Sensor. Actuator. B, 2009, 137, 529. https://doi.org/10.1016/j.snb.2009.01.028
dc.relation.referencesen50. Yatsyshyn M., Zastavs’ka G., Gnizdyukh Y., Visnyk Lviv Univ., 2014, 55, 413.
dc.relation.referencesen51. Stetsiv Yu., Halushchak I., Yatsyshyn M., Serkiz R., Visnyk Lviv Univ., 2016, 57, 418.
dc.relation.referencesen52. Stetsiv Yu., Yatsyshyn M., Demchenko P., Serkiz R., Visnyk Lviv Univ., 2017, 58, 357.
dc.relation.referencesen53. Hnizdiukh Yu., Yatsyshyn M., Reshetnyak O., [in:] Reshetnyak O., Zaikov G. (Eds.), Computational and Experimental Analysis of Functional Materials. Apple Academic Press, CRC Press (Taylor & Francis Group), Toronto, New Jersey 2017, 423-472.
dc.relation.referencesen54. Vivekanandan J., Ponnusamy V., Mahudeswaran A., Vijayanand P., Arch. Appl. Sci. Res., 2011, 3, 147.
dc.relation.referencesen55. Guo H., He W., Lu Y., Zhang X., Carbon, 2015, 92, 133. https://doi.org/10.1016/j.carbon.2015.03.062
dc.relation.referencesen56. Guo F., Liu Q., Mi H.:Mater. Lett., 2016, 163, 115. https://doi.org/10.1016/j.matlet.2015.10.053
dc.relation.referencesen57. Shi M., Bai M., Li B.:Mater. Lett., 2018, 212, 259. https://doi.org/10.1016/j.matlet.2017.10.107
dc.relation.referencesen58. Ho K., McKay G., Yeung K., Langmuir, 2003, 19, 3019. https://doi.org/10.1021/la0267084
dc.relation.referencesen59. Fung L., Mei F., Lun Y., Gold Bull., 2007, 40, 192. https://doi.org/10.1007/BF03215580
dc.relation.referencesen60. Xinqing C., Fung L., Qingjian Z. et al., J. Phys. Chem. C, 2009, 113, 9804. https://doi.org/10.1021/jp9018052
dc.relation.referencesen61. Fung L., Xinqing C., Mei F., Yeung K., Chem. Commun., 2008, 17, 2034. https://doi.org/10.1039/B719961A
dc.relation.referencesen62. Loh X., SairamM., Bismarck A. et al., J. Membrane Sci., 2009, 326, 635. https://doi.org/10.1016/j.memsci.2008.10.045
dc.relation.referencesen63. Yang C.-H., Wang T.-L., Shieh Y.-T., Electrochem. Commun., 2009, 11, 335. https://doi.org/10.1016/j.elecom.2008.12.014
dc.relation.referencesen64. Chandrakanthi N., CaremM., Polym. Bull., 2000, 44, 101. https://doi.org/10.1007/s002890050579
dc.relation.referencesen65. Zhang J., Liu C., Shi G., J. Appl. Polym. Sci., 2005, 96, 732. https://doi.org/10.1002/app.21520
dc.relation.referencesen66. Bhadra S., Khastgir D., Polym. Degrad. Stabil., 2008, 93, 1094. https://doi.org/10.1016/j.polymdegradstab.2008.03.013
dc.relation.referencesen67. BabazadehM., Iran. Polym. J., 2007, 16, 389.
dc.relation.referencesen68. Ding L., Wang X., Gregory R., SyntheticMet., 1999, 104, 73. https://doi.org/10.1016/S0379-6779(99)00035-1
dc.relation.referencesen69. Bhadra S., Khastgir D., Polym. Test., 2008, 27, 851. https://doi.org/10.1016/j.polymertesting.2008.07.002
dc.relation.referencesen70. Amano K., Ishikawa H., Kobayashi A. et al., SyntheticMet., 1994, 62, 229. https://doi.org/10.1016/0379-6779(94)90210-0
dc.relation.referencesen71. Pereira de Silva J., De Faria D., Cordoba de Torresi S., Temperini M.:Macromolecules, 2000, 33, 3077. https://doi.org/10.1021/ma990801q
dc.relation.referencesen72. Kieffel Y., Travers J., Ermolieff A., Rouchon D., J. Appl. Polym. Sci., 2002, 86, 395. https://doi.org/10.1002/app.10981
dc.relation.referencesen73. TrchovaM., Matejka P., Brodinova J. et al., Polym. Degrad. Stabil., 2006, 91, 114. https://doi.org/10.1016/j.polymdegradstab.2005.04.022
dc.relation.referencesen74. Mathew R., Mattes B., EspeM., SyntheticMet., 2002, 131, 141. https://doi.org/10.1016/S0379-6779(02)00177-7
dc.relation.referencesen75. AyadM., Abu El-Nasr A., J. Phys. Chem. C, 2010, 114, 14377. https://doi.org/10.1021/jp103780w
dc.relation.referencesen76. AyadM., Abu El-Nasr A., Stejskal J., J. Ind. Eng. Chem., 2012, 18, 1964. https://doi.org/10.1016/j.jiec.2012.05.012
dc.relation.referencesen77. AyadM., Zaghlol S., Chem. Eng. J., 2012, 204-206, 79. https://doi.org/10.1016/j.cej.2012.07.102
dc.relation.referencesen78. Jurczyk M., Kumar A., Srinivasan S., Stefanakos E., Int. J. Hydrog. Energ., 2007, 32, 1010. https://doi.org/10.1016/j.ijhydene.2006.07.012
dc.relation.referencesen79. Titus E., Cabral G., Madaleno J. et al.:2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings. USA, Santa Clara 2007, 1, 381.
dc.relation.referencesen80. Wang P.-C., Dan Y., Liu L.-H.:Mater. Chem. Phys., 2014, 144, 155. https://doi.org/10.1016/j.matchemphys.2013.12.035
dc.relation.referencesen81. Pham Q., Kim S., Korean J. Chem. Eng., 2016, 33, 290. https://doi.org/10.1007/s11814-015-0122-y
dc.relation.referencesen82. Stolarczyk A., Lapkowski M., SyntheticMet., 2001, 121, 1385. https://doi.org/10.1016/S0379-6779(00)01453-3
dc.relation.referencesen83. Hallik A., Alumaa A., Kurig H. et al., SyntheticMet., 2007, 157, 1085. https://doi.org/10.1016/j.synthmet.2007.10.017
dc.relation.referencesen84. Vernitskaya T., Efimov O., Russ. Chem. Rev., 1997, 66, 443. https://doi.org/10.1070/RC1997v066n05ABEH000261
dc.relation.referencesen85. Aleman C., Casanovas J., Torras J. et al., Polymer, 2008, 49, 1066. https://doi.org/10.1016/j.polymer.2007.12.039
dc.relation.referencesen86. Wang W., Li W., Ye J. et al., SyntheticMet., 2010, 160, 2203. https://doi.org/10.1016/j.synthmet.2010.08.010
dc.relation.referencesen87. Wysocka-ZołopaM., Winkler K., Electrochim. Acta, 2017, 258, 1. https://doi.org/10.1016/j.electacta.2017.12.005
dc.relation.referencesen88. Hakansson E., Lin T., Wang H., Kaynak A., SyntheticMet., 2006, 156, 1194. https://doi.org/10.1016/j.synthmet.2006.08.006
dc.relation.referencesen89. Wang X., Deng J., Duan X. et al., Appl. Energ., 2015, 153, 70. https://doi.org/10.1016/j.apenergy.2014.10.040
dc.relation.referencesen90. Lang X., Wan Q., Feng C. et al., SyntheticMet., 2010, 160, 1800. https://doi.org/10.1016/j.synthmet.2010.06.023
dc.relation.referencesen91. Germain J., Frecheta J., Svec F., Chem. Commun., 2009, 1526. https://doi.org/10.1039/B821233C
dc.relation.referencesen92. Lawal A., Wallace G., Talanta, 2014, 119, 133. https://doi.org/10.1016/j.talanta.2013.10.023
dc.relation.referencesen93. Okan B., Zanjani J., Letofsky-Papst I. et al.:Mater. Chem. Phys., 2015, 167, 171. https://doi.org/10.1016/j.matchemphys.2015.10.027
dc.relation.referencesen94. Attia N., Geckeler K.:Macromol. Rapid Comm., 2013, 34, 931. https://doi.org/10.1002/marc.201300060
dc.relation.referencesen95. Wood C., Tan B., Trewin A. et al., Chem. Mater., 2007, 19, 2034. https://doi.org/10.1021/cm070356a
dc.relation.referencesen96. Buda C., Dunietz B., J. Phys. Chem. B, 2006, 110, 10479. https://doi.org/10.1021/jp061249r
dc.relation.referencesen97. Rowsell J., Eckert J., Yaghi O., J. Am. Chem. Soc., 2005, 127, 14904. https://doi.org/10.1021/ja0542690
dc.relation.referencesen98. Lochan R., Head-GordonM., Phys. Chem. Chem. Phys., 2006, 8, 1357. https://doi.org/10.1039/b515409j
dc.relation.referencesen99. Li Y., Yang R., J. Am. Chem. Soc., 2006, 128, 8136. https://doi.org/10.1021/ja061681m
dc.relation.referencesen100. Jiang J., Su F., Trewin A. et al., J. Am. Chem. Soc., 2008, 130, 7710. https://doi.org/10.1021/ja8010176
dc.relation.urihttps://doi.org/10.1007/s00339-016-9881-5
dc.relation.urihttps://doi.org/10.1039/B720020J
dc.relation.urihttps://doi.org/10.1002/smll.200801762
dc.relation.urihttps://doi.org/10.1016/S0925-8388(00)00899-9
dc.relation.urihttps://doi.org/10.1016/S0925-8388(03)00376-1
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2008.03.050
dc.relation.urihttps://doi.org/10.1023/B:MASC.0000010933.80070.a9aszszZ
dc.relation.urihttps://doi.org/10.1007/s11003-006-0127-0
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2008.09.002
dc.relation.urihttps://doi.org/10.1007/s10008-009-0974-3
dc.relation.urihttps://doi.org/10.1260/0263617053499032
dc.relation.urihttps://doi.org/10.1063/1.463389
dc.relation.urihttps://doi.org/10.1021/cm061186p
dc.relation.urihttps://doi.org/10.1021/la0523816
dc.relation.urihttps://doi.org/10.1063/1.478114
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2014.08.017
dc.relation.urihttps://doi.org/10.1021/ja01145a126
dc.relation.urihttps://doi.org/10.1016/j.carbon.2004.05.015
dc.relation.urihttps://doi.org/10.1007/s10450-005-6030-4
dc.relation.urihttps://doi.org/10.1016/0021-9797(70)90077-9
dc.relation.urihttps://doi.org/10.1016/0008-6223(89)90078-X
dc.relation.urihttps://doi.org/10.1016/0376-7388(94)00126-X
dc.relation.urihttps://doi.org/10.1103/PhysRevA.31.2672
dc.relation.urihttps://doi.org/10.1252/jcej.16.470
dc.relation.urihttps://doi.org/10.1021/ja9808853
dc.relation.urihttps://doi.org/10.1021/la703864a
dc.relation.urihttps://doi.org/10.1021/la950969e
dc.relation.urihttps://doi.org/10.1007/BFb0051281
dc.relation.urihttps://doi.org/10.1021/ma0110958
dc.relation.urihttps://doi.org/10.1016/0014-3057(84)90195-2
dc.relation.urihttps://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3973::AID-POLA12>3.0.CO;2-X
dc.relation.urihttps://doi.org/10.1016/S0079-6700(00)00015-0
dc.relation.urihttps://doi.org/10.1016/0079-6700(82)90002-8
dc.relation.urihttps://doi.org/10.1039/A803757D
dc.relation.urihttps://doi.org/10.1002/(SICI)1099-0518(19980730)36:10<1543::AID-POLA7>3.0.CO;2-R
dc.relation.urihttps://doi.org/10.1002/pola.1992.080300208
dc.relation.urihttps://doi.org/10.1021/ac00031a022
dc.relation.urihttps://doi.org/10.1039/B711509A
dc.relation.urihttps://doi.org/10.1016/S1381-5148(02)00173-6
dc.relation.urihttps://doi.org/10.1134/S0012500806010022
dc.relation.urihttps://doi.org/10.1039/B604625H
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2005.05.004
dc.relation.urihttps://doi.org/10.1002/er.3095
dc.relation.urihttps://doi.org/10.1021/cm401978e
dc.relation.urihttps://doi.org/10.1021/jp063166g
dc.relation.urihttps://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1137::AID-ELAN1137>3.0.CO;2-1
dc.relation.urihttps://doi.org/10.1016/j.snb.2009.01.028
dc.relation.urihttps://doi.org/10.1016/j.carbon.2015.03.062
dc.relation.urihttps://doi.org/10.1016/j.matlet.2015.10.053
dc.relation.urihttps://doi.org/10.1016/j.matlet.2017.10.107
dc.relation.urihttps://doi.org/10.1021/la0267084
dc.relation.urihttps://doi.org/10.1007/BF03215580
dc.relation.urihttps://doi.org/10.1021/jp9018052
dc.relation.urihttps://doi.org/10.1039/B719961A
dc.relation.urihttps://doi.org/10.1016/j.memsci.2008.10.045
dc.relation.urihttps://doi.org/10.1016/j.elecom.2008.12.014
dc.relation.urihttps://doi.org/10.1007/s002890050579
dc.relation.urihttps://doi.org/10.1002/app.21520
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2008.03.013
dc.relation.urihttps://doi.org/10.1016/S0379-6779(99)00035-1
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2008.07.002
dc.relation.urihttps://doi.org/10.1016/0379-6779(94)90210-0
dc.relation.urihttps://doi.org/10.1021/ma990801q
dc.relation.urihttps://doi.org/10.1002/app.10981
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2005.04.022
dc.relation.urihttps://doi.org/10.1016/S0379-6779(02)00177-7
dc.relation.urihttps://doi.org/10.1021/jp103780w
dc.relation.urihttps://doi.org/10.1016/j.jiec.2012.05.012
dc.relation.urihttps://doi.org/10.1016/j.cej.2012.07.102
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2006.07.012
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2013.12.035
dc.relation.urihttps://doi.org/10.1007/s11814-015-0122-y
dc.relation.urihttps://doi.org/10.1016/S0379-6779(00)01453-3
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2007.10.017
dc.relation.urihttps://doi.org/10.1070/RC1997v066n05ABEH000261
dc.relation.urihttps://doi.org/10.1016/j.polymer.2007.12.039
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2010.08.010
dc.relation.urihttps://doi.org/10.1016/j.electacta.2017.12.005
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2006.08.006
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2014.10.040
dc.relation.urihttps://doi.org/10.1016/j.synthmet.2010.06.023
dc.relation.urihttps://doi.org/10.1039/B821233C
dc.relation.urihttps://doi.org/10.1016/j.talanta.2013.10.023
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2015.10.027
dc.relation.urihttps://doi.org/10.1002/marc.201300060
dc.relation.urihttps://doi.org/10.1021/cm070356a
dc.relation.urihttps://doi.org/10.1021/jp061249r
dc.relation.urihttps://doi.org/10.1021/ja0542690
dc.relation.urihttps://doi.org/10.1039/b515409j
dc.relation.urihttps://doi.org/10.1021/ja061681m
dc.relation.urihttps://doi.org/10.1021/ja8010176
dc.relation.urihttps://doi.org/10.1021/cm802157r
dc.relation.urihttps://doi.org/10.3144/expresspolymlett.2017.17
dc.relation.urihttps://doi.org/10.1039/C6EE01435F
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Saldan I., Stetsiv Yu., Makogon V., Kovalyshyn Ya., Yatsyshyn M., Reshetnyak O., 2019
dc.subjectгіперзшиті полімери
dc.subjectмікропористі матеріали
dc.subjectфізична сорбція
dc.subjectентальпія адсорбції водню
dc.subjecthypercrosslinked polymers
dc.subjectmicroporous materials
dc.subjectphysical sorption
dc.subjecthydrogen adsorption enthalpy
dc.titlePhysical sorption of molecular hydrogen by microporous organic polymers
dc.title.alternativeФізична сорбція молекулярного водню мікропористими органічними полімерами
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v13n1_Saldan_I-Physical_sorption_of_molecular_85-94.pdf
Size:
554.89 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v13n1_Saldan_I-Physical_sorption_of_molecular_85-94__COVER.png
Size:
530.85 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Plain Text
Description: