Biosynthesis and Characteristics of Polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter Vinelandii N-15

dc.citation.epage467
dc.citation.issue4
dc.citation.spage463
dc.contributor.affiliationPhChFF InPOCC NAS of Ukraine
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorSemeniuk, Ihor
dc.contributor.authorPokynbroda, Tetyana
dc.contributor.authorKochubei, Viktoria
dc.contributor.authorMidyana, Halyna
dc.contributor.authorKarpenko, Olena
dc.contributor.authorSkorokhoda, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-12-13T10:02:58Z
dc.date.available2023-12-13T10:02:58Z
dc.date.created2010-03-16
dc.date.issued2010-03-16
dc.description.abstractЗдійснено оптимізацію біосинтезу клітинних полімерів культури Azotobacter vinelandii N-15 з використанням меляси як джерела вуглецю. Найвищий вихід полімеру (25,8% від клітинної маси) був отриманий на поживному середовищі з концентрацією меляси 50 г/л. За допомогою тонкошарової хроматографії та ІЧ-спектроскопії отриманий продукт був ідентифікований як полігідроксибутират, його властивості були досліджені. Поверхневі властивості полімерної плівки охарактеризовано значенням крайового кута змочування. За результатами термічних і термомеханічних досліджень було встановлено, що отриманий полігідросибутират характеризується високою термостійкістю і теплостійкістю: температура плавлення становить 462 К, глибока деструкція і термоокисні процеси відбувається за температур, вищих 567 K.
dc.description.abstractThe biosynthesis of cellular polymers of Azotobacter vinelandii N-15 strain using molasses as a carbon source has been optimized. The highest yield of polymer (25.8 % of cell mass) was obtained on a nutrient medium with a molasses concentration of 50 g/l. Using TL-chromatography and IR-spectroscopy the obtained product was identified as polyhydroxybutyrate (PHB), and its properties were investigated. The wetting contact angle was used to characterize the biopolymer film surface properties. According to the results of thermal and thermomechanical studies, it was found that the obtained PHB is characterized by a high thermal stability and heat resistance: the melting point is 462 K; deep destruction and thermooxidative processes begin at the temperatures above 567 K.
dc.format.extent463-467
dc.format.pages5
dc.identifier.citationBiosynthesis and Characteristics of Polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter Vinelandii N-15 / Ihor Semeniuk, Tetyana Pokynbroda, Viktoria Kochubei, Halyna Midyana, Olena Karpenko, Volodymyr Skorokhoda // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 4. — P. 463–467.
dc.identifier.citationenBiosynthesis and Characteristics of Polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter Vinelandii N-15 / Ihor Semeniuk, Tetyana Pokynbroda, Viktoria Kochubei, Halyna Midyana, Olena Karpenko, Volodymyr Skorokhoda // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 4. — P. 463–467.
dc.identifier.doidoi.org/10.23939/chcht14.04.463
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60574
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (14), 2020
dc.relation.references[1] Abe H., Doi Y.: Molecular and material design of biodegradable poly(hydroxyl-alkonate)s' [in:] Doi Y., Steinbuchel A. (Eds.), Biopolymers 3b, Polyesters II. Wiley-VCH, Weinheim 2002,105-132. https://doi.org/10.1002/3527600035.bpol3b05
dc.relation.references[2] Shah A., Hasan F., Hameed A., Ahmed S.: Biotech. Adv., 2008, 26, 246. https://doi.org/10.1016/j.biotechadv.2007.12.005
dc.relation.references[3] Khanna S.; Srivastava A.: Proc. Biochem., 2005, 40, 607. https://doi.org/10.1016/j.procbio.2004.01.053
dc.relation.references[4] Bugnicourt E., Cinelli P., Lazzeri A., Alvarez V.: Express Polym. Lett., 2014, 8, 791. https://doi.org/10.3144/expresspolymlett.2014.82
dc.relation.references[5] Padermshoke A., Katsumoto Y., Sato H. et al.: Spectrochim. Acta. A, 2005, 61, 541. https://doi.org/10.1016/j.saa.2004.05.004
dc.relation.references[6] Slepickova Kasalkova N., Slepicka P., Kolska Z., Svorcik V.: Wettability and other Surface Properties of Modifies Polymers. InTech 2015. https://doi.org/10.5772/60824
dc.relation.references[7] Chen G., Wu Q.: Biomaterials, 2005, 26, 6565. https://doi.org/10.1016/j.biomaterials.2005.04.036
dc.relation.references[8] Shishatskaya E., Voinova O., Goreva A. et al.: J. Mater. Sci., 2008, 19, 2493. https://doi.org/10.1007/s10856-007-3345-6
dc.relation.references[9] Saini S., Rao P., Patil Y.: Procedia Soc. Behav. Sci., 2012, 37, 407. https://doi.org/10.1016/j.sbspro.2012.03.306
dc.relation.references[10] Halami P.: World J. Microbiol. Biotechnol., 2008, 24, 805. https://doi.org/10.1007/s11274-007-9543-z
dc.relation.references[11] Kunasundari B., Sudesh K.: Express Polym. Lett., 2011, 5, 620. https://doi.org/10.3144/expresspolymlett.2011.60
dc.relation.references[12] Tejera N., Lluch C., Martínez-Toledo M., González-López J.: Plant Soil, 2005, 270, 223. https://doi.org/10.1007/s11104-004-1522-7
dc.relation.references[13] Page W.: FEMS Microbiol. Lett., 1992, 103, 149. https://doi.org/10.1016/0378-1097(92)90304-7
dc.relation.references[14] Gerhardt P., Murray R., Wood W., Krieg N.: Methods for General and Molecular Bacteriology. Am. Soc. for Microbiol., Washington 1994. https://doi.org/10.1002/food.19960400226
dc.relation.references[15] Semeniuk I., Kochubei V., Skorokhoda V. et al.: Chem. Chem. Technol., 2020, 14, 26. https://doi.org/10.23939/chcht14.01.026.
dc.relation.references[16] Semeniuk I., Kocubei V., Karpenko O. et al.: Voprosy Khimii i Khimicheskoi Tekhnologii, 2019, 4, 150. https://doi.org/10.32434/0321-4095-2019-125-4-150-156
dc.relation.references[17] Telteibaum B.: Termomechancheskiy Analiz Polimerov. Nauka, Moskva 1979.
dc.relation.references[18] Panda B., Sharma L., Singh A., Mallick N.: Indian J. Biotechnol., 2008; 7, 230.
dc.relation.references[19]. Bonartsev A., Yakovlev S., Zharkova I. et al.: BMC Biochem., 2013, 14, 12. https://doi.org/10.1186/1471-2091-14-12
dc.relation.references[20] Nisha J., Mudaliar N., Senthilkumar P., Samrot A.: African J. Microbiol. Res., 2012, 6, 3623. https://doi.org/10.5897/AJMR11.1509
dc.relation.references[21] Mohapatra S., Samantaray D., Samantaray S.: Indian J. Sci. Technol., 2015, 8, 1. https://doi.org/10.17485/ijst/2015/v8iS7/64027
dc.relation.referencesen[1] Abe H., Doi Y., Molecular and material design of biodegradable poly(hydroxyl-alkonate)s' [in:] Doi Y., Steinbuchel A. (Eds.), Biopolymers 3b, Polyesters II. Wiley-VCH, Weinheim 2002,105-132. https://doi.org/10.1002/3527600035.bpol3b05
dc.relation.referencesen[2] Shah A., Hasan F., Hameed A., Ahmed S., Biotech. Adv., 2008, 26, 246. https://doi.org/10.1016/j.biotechadv.2007.12.005
dc.relation.referencesen[3] Khanna S.; Srivastava A., Proc. Biochem., 2005, 40, 607. https://doi.org/10.1016/j.procbio.2004.01.053
dc.relation.referencesen[4] Bugnicourt E., Cinelli P., Lazzeri A., Alvarez V., Express Polym. Lett., 2014, 8, 791. https://doi.org/10.3144/expresspolymlett.2014.82
dc.relation.referencesen[5] Padermshoke A., Katsumoto Y., Sato H. et al., Spectrochim. Acta. A, 2005, 61, 541. https://doi.org/10.1016/j.saa.2004.05.004
dc.relation.referencesen[6] Slepickova Kasalkova N., Slepicka P., Kolska Z., Svorcik V., Wettability and other Surface Properties of Modifies Polymers. InTech 2015. https://doi.org/10.5772/60824
dc.relation.referencesen[7] Chen G., Wu Q., Biomaterials, 2005, 26, 6565. https://doi.org/10.1016/j.biomaterials.2005.04.036
dc.relation.referencesen[8] Shishatskaya E., Voinova O., Goreva A. et al., J. Mater. Sci., 2008, 19, 2493. https://doi.org/10.1007/s10856-007-3345-6
dc.relation.referencesen[9] Saini S., Rao P., Patil Y., Procedia Soc. Behav. Sci., 2012, 37, 407. https://doi.org/10.1016/j.sbspro.2012.03.306
dc.relation.referencesen[10] Halami P., World J. Microbiol. Biotechnol., 2008, 24, 805. https://doi.org/10.1007/s11274-007-9543-z
dc.relation.referencesen[11] Kunasundari B., Sudesh K., Express Polym. Lett., 2011, 5, 620. https://doi.org/10.3144/expresspolymlett.2011.60
dc.relation.referencesen[12] Tejera N., Lluch C., Martínez-Toledo M., González-López J., Plant Soil, 2005, 270, 223. https://doi.org/10.1007/s11104-004-1522-7
dc.relation.referencesen[13] Page W., FEMS Microbiol. Lett., 1992, 103, 149. https://doi.org/10.1016/0378-1097(92)90304-7
dc.relation.referencesen[14] Gerhardt P., Murray R., Wood W., Krieg N., Methods for General and Molecular Bacteriology. Am. Soc. for Microbiol., Washington 1994. https://doi.org/10.1002/food.19960400226
dc.relation.referencesen[15] Semeniuk I., Kochubei V., Skorokhoda V. et al., Chem. Chem. Technol., 2020, 14, 26. https://doi.org/10.23939/chcht14.01.026.
dc.relation.referencesen[16] Semeniuk I., Kocubei V., Karpenko O. et al., Voprosy Khimii i Khimicheskoi Tekhnologii, 2019, 4, 150. https://doi.org/10.32434/0321-4095-2019-125-4-150-156
dc.relation.referencesen[17] Telteibaum B., Termomechancheskiy Analiz Polimerov. Nauka, Moskva 1979.
dc.relation.referencesen[18] Panda B., Sharma L., Singh A., Mallick N., Indian J. Biotechnol., 2008; 7, 230.
dc.relation.referencesen[19]. Bonartsev A., Yakovlev S., Zharkova I. et al., BMC Biochem., 2013, 14, 12. https://doi.org/10.1186/1471-2091-14-12
dc.relation.referencesen[20] Nisha J., Mudaliar N., Senthilkumar P., Samrot A., African J. Microbiol. Res., 2012, 6, 3623. https://doi.org/10.5897/AJMR11.1509
dc.relation.referencesen[21] Mohapatra S., Samantaray D., Samantaray S., Indian J. Sci. Technol., 2015, 8, 1. https://doi.org/10.17485/ijst/2015/v8iS7/64027
dc.relation.urihttps://doi.org/10.1002/3527600035.bpol3b05
dc.relation.urihttps://doi.org/10.1016/j.biotechadv.2007.12.005
dc.relation.urihttps://doi.org/10.1016/j.procbio.2004.01.053
dc.relation.urihttps://doi.org/10.3144/expresspolymlett.2014.82
dc.relation.urihttps://doi.org/10.1016/j.saa.2004.05.004
dc.relation.urihttps://doi.org/10.5772/60824
dc.relation.urihttps://doi.org/10.1016/j.biomaterials.2005.04.036
dc.relation.urihttps://doi.org/10.1007/s10856-007-3345-6
dc.relation.urihttps://doi.org/10.1016/j.sbspro.2012.03.306
dc.relation.urihttps://doi.org/10.1007/s11274-007-9543-z
dc.relation.urihttps://doi.org/10.3144/expresspolymlett.2011.60
dc.relation.urihttps://doi.org/10.1007/s11104-004-1522-7
dc.relation.urihttps://doi.org/10.1016/0378-1097(92)90304-7
dc.relation.urihttps://doi.org/10.1002/food.19960400226
dc.relation.urihttps://doi.org/10.23939/chcht14.01.026
dc.relation.urihttps://doi.org/10.32434/0321-4095-2019-125-4-150-156
dc.relation.urihttps://doi.org/10.1186/1471-2091-14-12
dc.relation.urihttps://doi.org/10.5897/AJMR11.1509
dc.relation.urihttps://doi.org/10.17485/ijst/2015/v8iS7/64027
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Semeniuk I., Pokynbroda T., Kochubei V., Midyana H., Karpenko O., Skorokhoda V., 2020
dc.subjectAzotobacter
dc.subjectполігідроксіалканоати
dc.subjectполігідросибутират
dc.subjectмеляса
dc.subjectтермомеханічний аналіз
dc.subjectкомплексний термічний аналіз
dc.subjectAzotobacter
dc.subjectpolyhydroxyalkanoates
dc.subjectpolyhydroxybutyrate
dc.subjectmolasses
dc.subjectthermomechanical analysis
dc.subjectcomplex thermal analysis
dc.titleBiosynthesis and Characteristics of Polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter Vinelandii N-15
dc.title.alternativeБіосинтез та характеристики полігідроксіалканоатів. 1. Полігідроксибутирати культури Azotobacter Vinelandii N-15
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v14n4_Semeniuk_I-Biosynthesis_and_Characteristics_463-467.pdf
Size:
469.52 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v14n4_Semeniuk_I-Biosynthesis_and_Characteristics_463-467__COVER.png
Size:
535.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: