Features of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents
dc.citation.epage | 548 | |
dc.citation.issue | 3 | |
dc.citation.spage | 542 | |
dc.contributor.affiliation | Lesya Ukrainka Volyn National University | |
dc.contributor.affiliation | Institute of Organic Chemistry of National Academy of Sciences of Ukraine | |
dc.contributor.affiliation | SSI “Institute for Single Crystals”, National Academy of Sciences of Ukraine | |
dc.contributor.author | Slyvka, Nataliia | |
dc.contributor.author | Saliyeva, Lesya | |
dc.contributor.author | Litvinchuk, Mariia | |
dc.contributor.author | Shishkina, Svitlana | |
dc.contributor.author | Vovk, Mykhailo | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:52:09Z | |
dc.date.available | 2024-02-12T08:52:09Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Вивчено особливості перебігу реакцій метансульфопохідних (бенз)імідазо[2,1-b][1,3]тіазинів з рядом нуклеофільних реагентів. Встановлено, що вони неселективно реагують із калію тіоціанатом, утворюючи суміш тіо- та ізотіоціанатопохідних. У свою чергу, у результаті взаємодії з натрію азидом поряд із нуклеофільним заміщенням має місце конкуруюча реакція елімінування. Остання реалізується як домінуюча в реакції з натрію ціанідом. Методом рентгеноструктурного аналізу встановлено просторову будову одного з ізомерних продуктів елімінування – 4H-бензо[4,5]імідазо[2,1-b][1,3]тіазину. | |
dc.description.abstract | Peculiarities of the course of the methanesulfo-derivatives of (benzo)imidazo[2,1-b][1,3]thiazines reactions with a number of nucleophilic reagents were studied. It was determined that they react nonselectively with potassium thiocyanate to form a mixture of thio- and isothiocyanate derivatives. When interacting with sodium azide, nucleophilic substitution competes with an elimination reaction. The latter is dominant in the reaction with sodium cyanide. The spatial structure of one of the isomer elimination products, 4H-benzo[4,5]imidazo[2,1-b][1,3] thiazine, was established by X-ray structural analysis. | |
dc.format.extent | 542-548 | |
dc.format.pages | 7 | |
dc.identifier.citation | Features of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents / Nataliia Slyvka, Lesya Saliyeva, Mariia Litvinchuk, Svitlana Shishkina, Mykhailo Vovk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 542–548. | |
dc.identifier.citationen | Features of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents / Nataliia Slyvka, Lesya Saliyeva, Mariia Litvinchuk, Svitlana Shishkina, Mykhailo Vovk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 542–548. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.542 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61285 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Radini, A.M.; Abdel-Wahab, B.F.; Khidre, R.E. Synthetic Routes to Imidazothiazines. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 844-856. https://doi.org/10.1080/10426507.2015.1119148 | |
dc.relation.references | [2] Goulart, T.A.C.; Kazmirski, J.A.G.; Back, D.F.; Zeni, G. Cyclization of Thiopropargyl Benzimidazoles by Combining Iron(III) Chloride and Diorganyl Diselenides. J. Org. Chem. 2019, 84, 14113-14126. https://doi.org/10.1021/acs.joc.9b02276 | |
dc.relation.references | [3] Ulomskiy, E.N.; Ivanova, A.V.; Gorbunov, E.B.; Esaulkova, I.L.; Slita, A.V.; Sinegubova, E.O.; Voinkov, E.K.; Drokin, R.A.; Butorin, I.I.; Gazizullina, E.R. et al. Synthesis and Biological Evalu-ation of 6-Nitro-1,2,4-triazoloazines Containing Polyphenol Frag-ments Possessing Antioxidant and Antiviral Activity. Bioorganic Med. Chem. Lett. 2020, 30, 127216. https://doi.org/10.1016/j.bmcl.2020.127216 | |
dc.relation.references | [4] Abdel-Mohsen, H.T.; Abood, A.; Flanagan, K.J.; Meindl, A.; Senge, M.O.; Diwani, H.I.El. Synthesis, Crystal Structure, and ADME Prediction Studies of Novel Imidazopyrimidines as Antibacterial and Cytotoxic Agents. Arch. Pharm. 2020, 353, 1900271. https://doi.org/10.1002/ardp.201900271 | |
dc.relation.references | [5] Demchenko, N.; Tkachenko, S.; Demchenko, S. Synthesis, Antibacterial and Anti-Corossive Activity of 2,3-Dihydroimidazo[1,2-a]pyridinium Bromides. Chem. Chem. Tech-nol. 2020, 14, 327-333. https://doi.org/10.23939/chcht14.03.327 | |
dc.relation.references | [6] Muhammad, Z.A.; Farghaly, T.A.; Althagafi, I.; AlHussain, S.A.; Zaki, M.E.A.; Harras, M.F. Synthesis of Antimicrobial Azo-loazines and Molecular Docking for Inhibiting COVID-19. J. Heterocycl. Chem. 2021, 58, 1286-1301. https://doi.org/10.1002/jhet.4257 | |
dc.relation.references | [7] Rodríguez, R.; Alejandro, O.; Vergara, M.; Sánchez, J.; Martínez, M.; Sandoval, Z.; Cruz, A.; Organillo, A. Synthesis, Crystal Structure, Antioxidant Activity and DFT Study of 2-Aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-One. J. Mol. Struct. 2020, 1199, 127036. https://doi.org/10.1016/j.molstruc.2019.127036 | |
dc.relation.references | [8] Thompson, A.M.; Marshall, A.J.; Maes, L.; Yarlett, N.; Bacchi, C.J.; Gaukel, E.; Wring, S.A.; Launay, D.; Braillard, S.; Chatelain, E. et al. Assessment of a Pretomanid Analogue Library for African trypanosomiasis: Hit-to-Lead Studies on 6-Substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorganic Med. Chem. Lett. 2018, 28, 207-213. https://doi:10.1016/j.bmcl.2017.10.067 | |
dc.relation.references | [9] Nikolova, I.; Slavchev, I.; Ravutsov, M.; Dangalov, M.; Nikolova, Y.; Zagranyarska, I.; Stoyanova, A.; Nikolova, N.; Mukova, L.; Grozdanov, P. et al. Anti-Enteroviral Activity of New MDL-860 Analogues: Synthesis, in vitro/in vivo Studies and QSAR Analysis. Bioorg. Chem. 2019, 85, 487–497. https://doi:10.1016/j.bioorg.2019.02.020 | |
dc.relation.references | [10] Gong, J.-X.; He, Y.; Cui, Z.-L.; Guo, Y.-W. Synthesis, Spectral Characterization, and Antituberculosis Activity of Thiazino[3,2-а]benzimidazole Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1036-1041. https://doi.org/10.1080/10426507.2015.1135149 | |
dc.relation.references | [11] Thompson, A.M.; O’Connor, P.D.; Marshall, A.J.; Francisco, A.F.; Kelly, J.M.; Riley, J.; Read, K.D.; Perez, C.J.; Cornwall, S.; Thompson, R.C.A. et al. Re-Evaluating Pretomanid Analogues for Chagas disease: Hit-to-Lead Studies Reveal Both in vitro and in vivo Trypanocidal Efficacy. Eur. J. Med. Chem. 2020, 207, 112849. https://doi.org/10.1016/j.ejmech.2020.112849 | |
dc.relation.references | [12] Meric, A.; Incesu, Z.; Hatipoglu, I. Synthesis of Some 3,4-Disubstituted-6,7-dihydroimidazo[2,1-b][1,3]thiazole and 3,4-Disubstituted-7,8-dihydro-6H-imidazo[2,1-b][1,3]thiazine Deriva-tives and Evaluation of their Cytotoxicities against F2408 and 5RP7 Cells. Med. Chem. Res. 2008, 17, 30-41. https://doi.org/10.1007/s00044-008-9090-7 | |
dc.relation.references | [13] Schoeder, C.T.; Kaleta, M.; Mahardhika, A.B.; Olejarz-Maciej, A.; Łażewska, D.; Kieć-Kononowicz, K.; Müller, Ch.E. Structure-Activity Relationships of Imidazothiazinones and Analogs as Anta-gonists of the Cannabinoid-Activated Orphan G Protein-Coupled Receptor GPR18. Eur. J. Med. Chem. 2018, 155, 381-397. https://doi.org/10.1016/j.ejmech.2018.05.050 | |
dc.relation.references | [14] Volkov, O.A.; Cosner, C.C.; Brockway, A.J.; Kramer, M.; Booker, M.; Zhong, Sh.; Ketcherside, A.; Wei, Sh.; Longgood, J.; McCoy, M. et al. Identification of Trypanosoma brucei AdoMetDC Inhibitors Using a High-Throughput Mass Spectrometry-Based Assay. ACS Infect. Dis. 2017, 3, 512-526. https://doi:10.1021/acsinfecdis.7b00022 | |
dc.relation.references | [15] Litvinchuk, M.B.; Bentya, A.V.; Slyvka, N.Yu.; Vovk, M.V. Synthesis and Functionalization of 2-Alkylidene-5-(bromomethyl)-2,3-dihydro-1,3-thiazole Derivatives. Chem. Heterocycl. Compd. 2018, 54, 559-567. https://doi.org/10.1007/s10593-018-2304-0 | |
dc.relation.references | [16] Saliyeva, L.M.; Vas’kevich, R.I.; Slyvka, N.Yu.; Vovk, M.V. The Synthesis and Structural Functionalization of 6-Substituted 2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-ones. J. Org. Pharm. Chem. 2018, 16, 31-41. https://doi.org/10.24959/ophcj.18.940 | |
dc.relation.references | [17] Shakh, Y.І.; Karkhut, А.І.; Bolibrukh, K.B.; Polovkovych, S.V. Rehioselektyvnist reaktsii nukleofilnoho zamishchennia mizh 5-zamishchenymy 1,4-naftokhinonamy ta aminotiotriazolamy. Khimiya, tekhnologiya rechovyn ta ih zastosuvannya 2015, 812, 210–217. (in Ukrainian) | |
dc.relation.references | [18] Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, A64, 112-122. http://dx.doi.org/10.1107/S0108767307043930 | |
dc.relation.references | [19] Kochergin, P.M.; Bagrii, A.K.; Galenko, A.K.; Kovpak, D.V.; Aleksandrova, E.V. Synthesis of 3-Halogeno Derivatives of Imida-zo[2,1-b]- and benzimidazo[2,1-b][1,3]thiazines. Chem. Heterocycl. Compd. 1997, 33, 882. https://doi.org/10.1007/BF02253051 | |
dc.relation.references | [20] Saliyeva, L.; Slyvka, N.; Holota, S.; Grozav, A.; Yakovychuk, N.; Litvinchuk, M.; Vovk, M. Synthesis and Evaluation of Bioac-tivity of (2-Pyridinyloxy)substituted (benzo)imidazo[2,1-b][1,3]thiazines. Biointerface Res. Appl. Chem. 2022, 12, 5031-5044. https://doi.org/10.33263/BRIAC124.50315044 | |
dc.relation.references | [21] Orlov, M.A.; Kapitanov, I.V.; Korotkikh, N I.; Shvaika, O.P. Synthesis and Recylization of 2,3,9,10-Tetrahydro-8H-[1,4]Dioxino[2,3-f]-[1,3]Thiazino[3,2-a]Benzimidazolium Salts. Chem. Heterocycl. Compd. 2014, 50, 111-116. https://doi.org/10.1007/s10593-014-1453-z | |
dc.relation.references | [22] Ouasif, L.; Ghoul, M.; Achour, R.; Saadi, M. 3,4-Dihydro-2H-benzo[4,5]imidazo[2,1-b][1,3]thiazin-3-ol. IUCrData 2017, 2, x170429. https://doi.org/10.1107/S2414314617004291 | |
dc.relation.references | [23] Gordon, A.J.; Ford, R.A. The Chemist’s Companion; Wiley-Interscience: New York, 1972. | |
dc.relation.references | [24] Novikov, R.V.; Danilkina, N.A.; Balova, I.A. Cyclocondensa-tion of n-(Prop-2-yn-1-yl)- and n-(Penta-2,4-diyn-1-yl)-o-phenylenediamines with Phenyl Isothiocyanate and Carbon Disul-fide. Chem. Heterocycl. Compd. 2011, 47, 758-766. https://doi:10.1007/s10593-011-0831-z | |
dc.relation.references | [25] Burgi, H.-B.; Dunitz, J.D. Structure correlation. Vol.2; VCH: Weinheim, 1994; pp 741-784. | |
dc.relation.referencesen | [1] Radini, A.M.; Abdel-Wahab, B.F.; Khidre, R.E. Synthetic Routes to Imidazothiazines. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 844-856. https://doi.org/10.1080/10426507.2015.1119148 | |
dc.relation.referencesen | [2] Goulart, T.A.C.; Kazmirski, J.A.G.; Back, D.F.; Zeni, G. Cyclization of Thiopropargyl Benzimidazoles by Combining Iron(III) Chloride and Diorganyl Diselenides. J. Org. Chem. 2019, 84, 14113-14126. https://doi.org/10.1021/acs.joc.9b02276 | |
dc.relation.referencesen | [3] Ulomskiy, E.N.; Ivanova, A.V.; Gorbunov, E.B.; Esaulkova, I.L.; Slita, A.V.; Sinegubova, E.O.; Voinkov, E.K.; Drokin, R.A.; Butorin, I.I.; Gazizullina, E.R. et al. Synthesis and Biological Evalu-ation of 6-Nitro-1,2,4-triazoloazines Containing Polyphenol Frag-ments Possessing Antioxidant and Antiviral Activity. Bioorganic Med. Chem. Lett. 2020, 30, 127216. https://doi.org/10.1016/j.bmcl.2020.127216 | |
dc.relation.referencesen | [4] Abdel-Mohsen, H.T.; Abood, A.; Flanagan, K.J.; Meindl, A.; Senge, M.O.; Diwani, H.I.El. Synthesis, Crystal Structure, and ADME Prediction Studies of Novel Imidazopyrimidines as Antibacterial and Cytotoxic Agents. Arch. Pharm. 2020, 353, 1900271. https://doi.org/10.1002/ardp.201900271 | |
dc.relation.referencesen | [5] Demchenko, N.; Tkachenko, S.; Demchenko, S. Synthesis, Antibacterial and Anti-Corossive Activity of 2,3-Dihydroimidazo[1,2-a]pyridinium Bromides. Chem. Chem. Tech-nol. 2020, 14, 327-333. https://doi.org/10.23939/chcht14.03.327 | |
dc.relation.referencesen | [6] Muhammad, Z.A.; Farghaly, T.A.; Althagafi, I.; AlHussain, S.A.; Zaki, M.E.A.; Harras, M.F. Synthesis of Antimicrobial Azo-loazines and Molecular Docking for Inhibiting COVID-19. J. Heterocycl. Chem. 2021, 58, 1286-1301. https://doi.org/10.1002/jhet.4257 | |
dc.relation.referencesen | [7] Rodríguez, R.; Alejandro, O.; Vergara, M.; Sánchez, J.; Martínez, M.; Sandoval, Z.; Cruz, A.; Organillo, A. Synthesis, Crystal Structure, Antioxidant Activity and DFT Study of 2-Aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-One. J. Mol. Struct. 2020, 1199, 127036. https://doi.org/10.1016/j.molstruc.2019.127036 | |
dc.relation.referencesen | [8] Thompson, A.M.; Marshall, A.J.; Maes, L.; Yarlett, N.; Bacchi, C.J.; Gaukel, E.; Wring, S.A.; Launay, D.; Braillard, S.; Chatelain, E. et al. Assessment of a Pretomanid Analogue Library for African trypanosomiasis: Hit-to-Lead Studies on 6-Substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorganic Med. Chem. Lett. 2018, 28, 207-213. https://doi:10.1016/j.bmcl.2017.10.067 | |
dc.relation.referencesen | [9] Nikolova, I.; Slavchev, I.; Ravutsov, M.; Dangalov, M.; Nikolova, Y.; Zagranyarska, I.; Stoyanova, A.; Nikolova, N.; Mukova, L.; Grozdanov, P. et al. Anti-Enteroviral Activity of New MDL-860 Analogues: Synthesis, in vitro/in vivo Studies and QSAR Analysis. Bioorg. Chem. 2019, 85, 487–497. https://doi:10.1016/j.bioorg.2019.02.020 | |
dc.relation.referencesen | [10] Gong, J.-X.; He, Y.; Cui, Z.-L.; Guo, Y.-W. Synthesis, Spectral Characterization, and Antituberculosis Activity of Thiazino[3,2-a]benzimidazole Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1036-1041. https://doi.org/10.1080/10426507.2015.1135149 | |
dc.relation.referencesen | [11] Thompson, A.M.; O’Connor, P.D.; Marshall, A.J.; Francisco, A.F.; Kelly, J.M.; Riley, J.; Read, K.D.; Perez, C.J.; Cornwall, S.; Thompson, R.C.A. et al. Re-Evaluating Pretomanid Analogues for Chagas disease: Hit-to-Lead Studies Reveal Both in vitro and in vivo Trypanocidal Efficacy. Eur. J. Med. Chem. 2020, 207, 112849. https://doi.org/10.1016/j.ejmech.2020.112849 | |
dc.relation.referencesen | [12] Meric, A.; Incesu, Z.; Hatipoglu, I. Synthesis of Some 3,4-Disubstituted-6,7-dihydroimidazo[2,1-b][1,3]thiazole and 3,4-Disubstituted-7,8-dihydro-6H-imidazo[2,1-b][1,3]thiazine Deriva-tives and Evaluation of their Cytotoxicities against F2408 and 5RP7 Cells. Med. Chem. Res. 2008, 17, 30-41. https://doi.org/10.1007/s00044-008-9090-7 | |
dc.relation.referencesen | [13] Schoeder, C.T.; Kaleta, M.; Mahardhika, A.B.; Olejarz-Maciej, A.; Łażewska, D.; Kieć-Kononowicz, K.; Müller, Ch.E. Structure-Activity Relationships of Imidazothiazinones and Analogs as Anta-gonists of the Cannabinoid-Activated Orphan G Protein-Coupled Receptor GPR18. Eur. J. Med. Chem. 2018, 155, 381-397. https://doi.org/10.1016/j.ejmech.2018.05.050 | |
dc.relation.referencesen | [14] Volkov, O.A.; Cosner, C.C.; Brockway, A.J.; Kramer, M.; Booker, M.; Zhong, Sh.; Ketcherside, A.; Wei, Sh.; Longgood, J.; McCoy, M. et al. Identification of Trypanosoma brucei AdoMetDC Inhibitors Using a High-Throughput Mass Spectrometry-Based Assay. ACS Infect. Dis. 2017, 3, 512-526. https://doi:10.1021/acsinfecdis.7b00022 | |
dc.relation.referencesen | [15] Litvinchuk, M.B.; Bentya, A.V.; Slyvka, N.Yu.; Vovk, M.V. Synthesis and Functionalization of 2-Alkylidene-5-(bromomethyl)-2,3-dihydro-1,3-thiazole Derivatives. Chem. Heterocycl. Compd. 2018, 54, 559-567. https://doi.org/10.1007/s10593-018-2304-0 | |
dc.relation.referencesen | [16] Saliyeva, L.M.; Vas’kevich, R.I.; Slyvka, N.Yu.; Vovk, M.V. The Synthesis and Structural Functionalization of 6-Substituted 2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-ones. J. Org. Pharm. Chem. 2018, 16, 31-41. https://doi.org/10.24959/ophcj.18.940 | |
dc.relation.referencesen | [17] Shakh, Y.I.; Karkhut, A.I.; Bolibrukh, K.B.; Polovkovych, S.V. Rehioselektyvnist reaktsii nukleofilnoho zamishchennia mizh 5-zamishchenymy 1,4-naftokhinonamy ta aminotiotriazolamy. Khimiya, tekhnologiya rechovyn ta ih zastosuvannya 2015, 812, 210–217. (in Ukrainian) | |
dc.relation.referencesen | [18] Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, A64, 112-122. http://dx.doi.org/10.1107/S0108767307043930 | |
dc.relation.referencesen | [19] Kochergin, P.M.; Bagrii, A.K.; Galenko, A.K.; Kovpak, D.V.; Aleksandrova, E.V. Synthesis of 3-Halogeno Derivatives of Imida-zo[2,1-b]- and benzimidazo[2,1-b][1,3]thiazines. Chem. Heterocycl. Compd. 1997, 33, 882. https://doi.org/10.1007/BF02253051 | |
dc.relation.referencesen | [20] Saliyeva, L.; Slyvka, N.; Holota, S.; Grozav, A.; Yakovychuk, N.; Litvinchuk, M.; Vovk, M. Synthesis and Evaluation of Bioac-tivity of (2-Pyridinyloxy)substituted (benzo)imidazo[2,1-b][1,3]thiazines. Biointerface Res. Appl. Chem. 2022, 12, 5031-5044. https://doi.org/10.33263/BRIAC124.50315044 | |
dc.relation.referencesen | [21] Orlov, M.A.; Kapitanov, I.V.; Korotkikh, N I.; Shvaika, O.P. Synthesis and Recylization of 2,3,9,10-Tetrahydro-8H-[1,4]Dioxino[2,3-f]-[1,3]Thiazino[3,2-a]Benzimidazolium Salts. Chem. Heterocycl. Compd. 2014, 50, 111-116. https://doi.org/10.1007/s10593-014-1453-z | |
dc.relation.referencesen | [22] Ouasif, L.; Ghoul, M.; Achour, R.; Saadi, M. 3,4-Dihydro-2H-benzo[4,5]imidazo[2,1-b][1,3]thiazin-3-ol. IUCrData 2017, 2, x170429. https://doi.org/10.1107/S2414314617004291 | |
dc.relation.referencesen | [23] Gordon, A.J.; Ford, R.A. The Chemist’s Companion; Wiley-Interscience: New York, 1972. | |
dc.relation.referencesen | [24] Novikov, R.V.; Danilkina, N.A.; Balova, I.A. Cyclocondensa-tion of n-(Prop-2-yn-1-yl)- and n-(Penta-2,4-diyn-1-yl)-o-phenylenediamines with Phenyl Isothiocyanate and Carbon Disul-fide. Chem. Heterocycl. Compd. 2011, 47, 758-766. https://doi:10.1007/s10593-011-0831-z | |
dc.relation.referencesen | [25] Burgi, H.-B.; Dunitz, J.D. Structure correlation. Vol.2; VCH: Weinheim, 1994; pp 741-784. | |
dc.relation.uri | https://doi.org/10.1080/10426507.2015.1119148 | |
dc.relation.uri | https://doi.org/10.1021/acs.joc.9b02276 | |
dc.relation.uri | https://doi.org/10.1016/j.bmcl.2020.127216 | |
dc.relation.uri | https://doi.org/10.1002/ardp.201900271 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.327 | |
dc.relation.uri | https://doi.org/10.1002/jhet.4257 | |
dc.relation.uri | https://doi.org/10.1016/j.molstruc.2019.127036 | |
dc.relation.uri | https://doi:10.1016/j.bmcl.2017.10.067 | |
dc.relation.uri | https://doi:10.1016/j.bioorg.2019.02.020 | |
dc.relation.uri | https://doi.org/10.1080/10426507.2015.1135149 | |
dc.relation.uri | https://doi.org/10.1016/j.ejmech.2020.112849 | |
dc.relation.uri | https://doi.org/10.1007/s00044-008-9090-7 | |
dc.relation.uri | https://doi.org/10.1016/j.ejmech.2018.05.050 | |
dc.relation.uri | https://doi:10.1021/acsinfecdis.7b00022 | |
dc.relation.uri | https://doi.org/10.1007/s10593-018-2304-0 | |
dc.relation.uri | https://doi.org/10.24959/ophcj.18.940 | |
dc.relation.uri | http://dx.doi.org/10.1107/S0108767307043930 | |
dc.relation.uri | https://doi.org/10.1007/BF02253051 | |
dc.relation.uri | https://doi.org/10.33263/BRIAC124.50315044 | |
dc.relation.uri | https://doi.org/10.1007/s10593-014-1453-z | |
dc.relation.uri | https://doi.org/10.1107/S2414314617004291 | |
dc.relation.uri | https://doi:10.1007/s10593-011-0831-z | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Slyvka N., Saliyeva L., Litvinchuk M., Shishkina S., Vovk M., 2023 | |
dc.subject | (бензо)імідазо[2 | |
dc.subject | 1-b][1 | |
dc.subject | 3]тіазини | |
dc.subject | реакції нуклеофільного заміщення | |
dc.subject | реакції елімінування | |
dc.subject | тіо(ізотіо) ціанато- та азидопохідні | |
dc.subject | (benzo)imidazo[2 | |
dc.subject | 1-b][1 | |
dc.subject | 3]thiazines | |
dc.subject | nucleophilic substitution reaction | |
dc.subject | elimination reaction | |
dc.subject | thio (isothio)cyanato and azidoderivatives | |
dc.title | Features of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents | |
dc.title.alternative | Особливості взаємодії (бензо)імідазо[2,1-b][1,3]тіазинмезилатів з нуклеофільними реагентами | |
dc.type | Article |
Files
License bundle
1 - 1 of 1