Features of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents

dc.citation.epage548
dc.citation.issue3
dc.citation.spage542
dc.contributor.affiliationLesya Ukrainka Volyn National University
dc.contributor.affiliationInstitute of Organic Chemistry of National Academy of Sciences of Ukraine
dc.contributor.affiliationSSI “Institute for Single Crystals”, National Academy of Sciences of Ukraine
dc.contributor.authorSlyvka, Nataliia
dc.contributor.authorSaliyeva, Lesya
dc.contributor.authorLitvinchuk, Mariia
dc.contributor.authorShishkina, Svitlana
dc.contributor.authorVovk, Mykhailo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:52:09Z
dc.date.available2024-02-12T08:52:09Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractВивчено особливості перебігу реакцій метансульфопохідних (бенз)імідазо[2,1-b][1,3]тіазинів з рядом нуклеофільних реагентів. Встановлено, що вони неселективно реагують із калію тіоціанатом, утворюючи суміш тіо- та ізотіоціанатопохідних. У свою чергу, у результаті взаємодії з натрію азидом поряд із нуклеофільним заміщенням має місце конкуруюча реакція елімінування. Остання реалізується як домінуюча в реакції з натрію ціанідом. Методом рентгеноструктурного аналізу встановлено просторову будову одного з ізомерних продуктів елімінування – 4H-бензо[4,5]імідазо[2,1-b][1,3]тіазину.
dc.description.abstractPeculiarities of the course of the methanesulfo-derivatives of (benzo)imidazo[2,1-b][1,3]thiazines reactions with a number of nucleophilic reagents were studied. It was determined that they react nonselectively with potassium thiocyanate to form a mixture of thio- and isothiocyanate derivatives. When interacting with sodium azide, nucleophilic substitution competes with an elimination reaction. The latter is dominant in the reaction with sodium cyanide. The spatial structure of one of the isomer elimination products, 4H-benzo[4,5]imidazo[2,1-b][1,3] thiazine, was established by X-ray structural analysis.
dc.format.extent542-548
dc.format.pages7
dc.identifier.citationFeatures of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents / Nataliia Slyvka, Lesya Saliyeva, Mariia Litvinchuk, Svitlana Shishkina, Mykhailo Vovk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 542–548.
dc.identifier.citationenFeatures of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents / Nataliia Slyvka, Lesya Saliyeva, Mariia Litvinchuk, Svitlana Shishkina, Mykhailo Vovk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 542–548.
dc.identifier.doidoi.org/10.23939/chcht17.03.542
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61285
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Radini, A.M.; Abdel-Wahab, B.F.; Khidre, R.E. Synthetic Routes to Imidazothiazines. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 844-856. https://doi.org/10.1080/10426507.2015.1119148
dc.relation.references[2] Goulart, T.A.C.; Kazmirski, J.A.G.; Back, D.F.; Zeni, G. Cyclization of Thiopropargyl Benzimidazoles by Combining Iron(III) Chloride and Diorganyl Diselenides. J. Org. Chem. 2019, 84, 14113-14126. https://doi.org/10.1021/acs.joc.9b02276
dc.relation.references[3] Ulomskiy, E.N.; Ivanova, A.V.; Gorbunov, E.B.; Esaulkova, I.L.; Slita, A.V.; Sinegubova, E.O.; Voinkov, E.K.; Drokin, R.A.; Butorin, I.I.; Gazizullina, E.R. et al. Synthesis and Biological Evalu-ation of 6-Nitro-1,2,4-triazoloazines Containing Polyphenol Frag-ments Possessing Antioxidant and Antiviral Activity. Bioorganic Med. Chem. Lett. 2020, 30, 127216. https://doi.org/10.1016/j.bmcl.2020.127216
dc.relation.references[4] Abdel-Mohsen, H.T.; Abood, A.; Flanagan, K.J.; Meindl, A.; Senge, M.O.; Diwani, H.I.El. Synthesis, Crystal Structure, and ADME Prediction Studies of Novel Imidazopyrimidines as Antibacterial and Cytotoxic Agents. Arch. Pharm. 2020, 353, 1900271. https://doi.org/10.1002/ardp.201900271
dc.relation.references[5] Demchenko, N.; Tkachenko, S.; Demchenko, S. Synthesis, Antibacterial and Anti-Corossive Activity of 2,3-Dihydroimidazo[1,2-a]pyridinium Bromides. Chem. Chem. Tech-nol. 2020, 14, 327-333. https://doi.org/10.23939/chcht14.03.327
dc.relation.references[6] Muhammad, Z.A.; Farghaly, T.A.; Althagafi, I.; AlHussain, S.A.; Zaki, M.E.A.; Harras, M.F. Synthesis of Antimicrobial Azo-loazines and Molecular Docking for Inhibiting COVID-19. J. Heterocycl. Chem. 2021, 58, 1286-1301. https://doi.org/10.1002/jhet.4257
dc.relation.references[7] Rodríguez, R.; Alejandro, O.; Vergara, M.; Sánchez, J.; Martínez, M.; Sandoval, Z.; Cruz, A.; Organillo, A. Synthesis, Crystal Structure, Antioxidant Activity and DFT Study of 2-Aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-One. J. Mol. Struct. 2020, 1199, 127036. https://doi.org/10.1016/j.molstruc.2019.127036
dc.relation.references[8] Thompson, A.M.; Marshall, A.J.; Maes, L.; Yarlett, N.; Bacchi, C.J.; Gaukel, E.; Wring, S.A.; Launay, D.; Braillard, S.; Chatelain, E. et al. Assessment of a Pretomanid Analogue Library for African trypanosomiasis: Hit-to-Lead Studies on 6-Substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorganic Med. Chem. Lett. 2018, 28, 207-213. https://doi:10.1016/j.bmcl.2017.10.067
dc.relation.references[9] Nikolova, I.; Slavchev, I.; Ravutsov, M.; Dangalov, M.; Nikolova, Y.; Zagranyarska, I.; Stoyanova, A.; Nikolova, N.; Mukova, L.; Grozdanov, P. et al. Anti-Enteroviral Activity of New MDL-860 Analogues: Synthesis, in vitro/in vivo Studies and QSAR Analysis. Bioorg. Chem. 2019, 85, 487–497. https://doi:10.1016/j.bioorg.2019.02.020
dc.relation.references[10] Gong, J.-X.; He, Y.; Cui, Z.-L.; Guo, Y.-W. Synthesis, Spectral Characterization, and Antituberculosis Activity of Thiazino[3,2-а]benzimidazole Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1036-1041. https://doi.org/10.1080/10426507.2015.1135149
dc.relation.references[11] Thompson, A.M.; O’Connor, P.D.; Marshall, A.J.; Francisco, A.F.; Kelly, J.M.; Riley, J.; Read, K.D.; Perez, C.J.; Cornwall, S.; Thompson, R.C.A. et al. Re-Evaluating Pretomanid Analogues for Chagas disease: Hit-to-Lead Studies Reveal Both in vitro and in vivo Trypanocidal Efficacy. Eur. J. Med. Chem. 2020, 207, 112849. https://doi.org/10.1016/j.ejmech.2020.112849
dc.relation.references[12] Meric, A.; Incesu, Z.; Hatipoglu, I. Synthesis of Some 3,4-Disubstituted-6,7-dihydroimidazo[2,1-b][1,3]thiazole and 3,4-Disubstituted-7,8-dihydro-6H-imidazo[2,1-b][1,3]thiazine Deriva-tives and Evaluation of their Cytotoxicities against F2408 and 5RP7 Cells. Med. Chem. Res. 2008, 17, 30-41. https://doi.org/10.1007/s00044-008-9090-7
dc.relation.references[13] Schoeder, C.T.; Kaleta, M.; Mahardhika, A.B.; Olejarz-Maciej, A.; Łażewska, D.; Kieć-Kononowicz, K.; Müller, Ch.E. Structure-Activity Relationships of Imidazothiazinones and Analogs as Anta-gonists of the Cannabinoid-Activated Orphan G Protein-Coupled Receptor GPR18. Eur. J. Med. Chem. 2018, 155, 381-397. https://doi.org/10.1016/j.ejmech.2018.05.050
dc.relation.references[14] Volkov, O.A.; Cosner, C.C.; Brockway, A.J.; Kramer, M.; Booker, M.; Zhong, Sh.; Ketcherside, A.; Wei, Sh.; Longgood, J.; McCoy, M. et al. Identification of Trypanosoma brucei AdoMetDC Inhibitors Using a High-Throughput Mass Spectrometry-Based Assay. ACS Infect. Dis. 2017, 3, 512-526. https://doi:10.1021/acsinfecdis.7b00022
dc.relation.references[15] Litvinchuk, M.B.; Bentya, A.V.; Slyvka, N.Yu.; Vovk, M.V. Synthesis and Functionalization of 2-Alkylidene-5-(bromomethyl)-2,3-dihydro-1,3-thiazole Derivatives. Chem. Heterocycl. Compd. 2018, 54, 559-567. https://doi.org/10.1007/s10593-018-2304-0
dc.relation.references[16] Saliyeva, L.M.; Vas’kevich, R.I.; Slyvka, N.Yu.; Vovk, M.V. The Synthesis and Structural Functionalization of 6-Substituted 2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-ones. J. Org. Pharm. Chem. 2018, 16, 31-41. https://doi.org/10.24959/ophcj.18.940
dc.relation.references[17] Shakh, Y.І.; Karkhut, А.І.; Bolibrukh, K.B.; Polovkovych, S.V. Rehioselektyvnist reaktsii nukleofilnoho zamishchennia mizh 5-zamishchenymy 1,4-naftokhinonamy ta aminotiotriazolamy. Khimiya, tekhnologiya rechovyn ta ih zastosuvannya 2015, 812, 210–217. (in Ukrainian)
dc.relation.references[18] Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, A64, 112-122. http://dx.doi.org/10.1107/S0108767307043930
dc.relation.references[19] Kochergin, P.M.; Bagrii, A.K.; Galenko, A.K.; Kovpak, D.V.; Aleksandrova, E.V. Synthesis of 3-Halogeno Derivatives of Imida-zo[2,1-b]- and benzimidazo[2,1-b][1,3]thiazines. Chem. Heterocycl. Compd. 1997, 33, 882. https://doi.org/10.1007/BF02253051
dc.relation.references[20] Saliyeva, L.; Slyvka, N.; Holota, S.; Grozav, A.; Yakovychuk, N.; Litvinchuk, M.; Vovk, M. Synthesis and Evaluation of Bioac-tivity of (2-Pyridinyloxy)substituted (benzo)imidazo[2,1-b][1,3]thiazines. Biointerface Res. Appl. Chem. 2022, 12, 5031-5044. https://doi.org/10.33263/BRIAC124.50315044
dc.relation.references[21] Orlov, M.A.; Kapitanov, I.V.; Korotkikh, N I.; Shvaika, O.P. Synthesis and Recylization of 2,3,9,10-Tetrahydro-8H-[1,4]Dioxino[2,3-f]-[1,3]Thiazino[3,2-a]Benzimidazolium Salts. Chem. Heterocycl. Compd. 2014, 50, 111-116. https://doi.org/10.1007/s10593-014-1453-z
dc.relation.references[22] Ouasif, L.; Ghoul, M.; Achour, R.; Saadi, M. 3,4-Dihydro-2H-benzo[4,5]imidazo[2,1-b][1,3]thiazin-3-ol. IUCrData 2017, 2, x170429. https://doi.org/10.1107/S2414314617004291
dc.relation.references[23] Gordon, A.J.; Ford, R.A. The Chemist’s Companion; Wiley-Interscience: New York, 1972.
dc.relation.references[24] Novikov, R.V.; Danilkina, N.A.; Balova, I.A. Cyclocondensa-tion of n-(Prop-2-yn-1-yl)- and n-(Penta-2,4-diyn-1-yl)-o-phenylenediamines with Phenyl Isothiocyanate and Carbon Disul-fide. Chem. Heterocycl. Compd. 2011, 47, 758-766. https://doi:10.1007/s10593-011-0831-z
dc.relation.references[25] Burgi, H.-B.; Dunitz, J.D. Structure correlation. Vol.2; VCH: Weinheim, 1994; pp 741-784.
dc.relation.referencesen[1] Radini, A.M.; Abdel-Wahab, B.F.; Khidre, R.E. Synthetic Routes to Imidazothiazines. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 844-856. https://doi.org/10.1080/10426507.2015.1119148
dc.relation.referencesen[2] Goulart, T.A.C.; Kazmirski, J.A.G.; Back, D.F.; Zeni, G. Cyclization of Thiopropargyl Benzimidazoles by Combining Iron(III) Chloride and Diorganyl Diselenides. J. Org. Chem. 2019, 84, 14113-14126. https://doi.org/10.1021/acs.joc.9b02276
dc.relation.referencesen[3] Ulomskiy, E.N.; Ivanova, A.V.; Gorbunov, E.B.; Esaulkova, I.L.; Slita, A.V.; Sinegubova, E.O.; Voinkov, E.K.; Drokin, R.A.; Butorin, I.I.; Gazizullina, E.R. et al. Synthesis and Biological Evalu-ation of 6-Nitro-1,2,4-triazoloazines Containing Polyphenol Frag-ments Possessing Antioxidant and Antiviral Activity. Bioorganic Med. Chem. Lett. 2020, 30, 127216. https://doi.org/10.1016/j.bmcl.2020.127216
dc.relation.referencesen[4] Abdel-Mohsen, H.T.; Abood, A.; Flanagan, K.J.; Meindl, A.; Senge, M.O.; Diwani, H.I.El. Synthesis, Crystal Structure, and ADME Prediction Studies of Novel Imidazopyrimidines as Antibacterial and Cytotoxic Agents. Arch. Pharm. 2020, 353, 1900271. https://doi.org/10.1002/ardp.201900271
dc.relation.referencesen[5] Demchenko, N.; Tkachenko, S.; Demchenko, S. Synthesis, Antibacterial and Anti-Corossive Activity of 2,3-Dihydroimidazo[1,2-a]pyridinium Bromides. Chem. Chem. Tech-nol. 2020, 14, 327-333. https://doi.org/10.23939/chcht14.03.327
dc.relation.referencesen[6] Muhammad, Z.A.; Farghaly, T.A.; Althagafi, I.; AlHussain, S.A.; Zaki, M.E.A.; Harras, M.F. Synthesis of Antimicrobial Azo-loazines and Molecular Docking for Inhibiting COVID-19. J. Heterocycl. Chem. 2021, 58, 1286-1301. https://doi.org/10.1002/jhet.4257
dc.relation.referencesen[7] Rodríguez, R.; Alejandro, O.; Vergara, M.; Sánchez, J.; Martínez, M.; Sandoval, Z.; Cruz, A.; Organillo, A. Synthesis, Crystal Structure, Antioxidant Activity and DFT Study of 2-Aryl-2,3-dihydro-4H-[1,3]thiazino[3,2-a]benzimidazol-4-One. J. Mol. Struct. 2020, 1199, 127036. https://doi.org/10.1016/j.molstruc.2019.127036
dc.relation.referencesen[8] Thompson, A.M.; Marshall, A.J.; Maes, L.; Yarlett, N.; Bacchi, C.J.; Gaukel, E.; Wring, S.A.; Launay, D.; Braillard, S.; Chatelain, E. et al. Assessment of a Pretomanid Analogue Library for African trypanosomiasis: Hit-to-Lead Studies on 6-Substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorganic Med. Chem. Lett. 2018, 28, 207-213. https://doi:10.1016/j.bmcl.2017.10.067
dc.relation.referencesen[9] Nikolova, I.; Slavchev, I.; Ravutsov, M.; Dangalov, M.; Nikolova, Y.; Zagranyarska, I.; Stoyanova, A.; Nikolova, N.; Mukova, L.; Grozdanov, P. et al. Anti-Enteroviral Activity of New MDL-860 Analogues: Synthesis, in vitro/in vivo Studies and QSAR Analysis. Bioorg. Chem. 2019, 85, 487–497. https://doi:10.1016/j.bioorg.2019.02.020
dc.relation.referencesen[10] Gong, J.-X.; He, Y.; Cui, Z.-L.; Guo, Y.-W. Synthesis, Spectral Characterization, and Antituberculosis Activity of Thiazino[3,2-a]benzimidazole Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1036-1041. https://doi.org/10.1080/10426507.2015.1135149
dc.relation.referencesen[11] Thompson, A.M.; O’Connor, P.D.; Marshall, A.J.; Francisco, A.F.; Kelly, J.M.; Riley, J.; Read, K.D.; Perez, C.J.; Cornwall, S.; Thompson, R.C.A. et al. Re-Evaluating Pretomanid Analogues for Chagas disease: Hit-to-Lead Studies Reveal Both in vitro and in vivo Trypanocidal Efficacy. Eur. J. Med. Chem. 2020, 207, 112849. https://doi.org/10.1016/j.ejmech.2020.112849
dc.relation.referencesen[12] Meric, A.; Incesu, Z.; Hatipoglu, I. Synthesis of Some 3,4-Disubstituted-6,7-dihydroimidazo[2,1-b][1,3]thiazole and 3,4-Disubstituted-7,8-dihydro-6H-imidazo[2,1-b][1,3]thiazine Deriva-tives and Evaluation of their Cytotoxicities against F2408 and 5RP7 Cells. Med. Chem. Res. 2008, 17, 30-41. https://doi.org/10.1007/s00044-008-9090-7
dc.relation.referencesen[13] Schoeder, C.T.; Kaleta, M.; Mahardhika, A.B.; Olejarz-Maciej, A.; Łażewska, D.; Kieć-Kononowicz, K.; Müller, Ch.E. Structure-Activity Relationships of Imidazothiazinones and Analogs as Anta-gonists of the Cannabinoid-Activated Orphan G Protein-Coupled Receptor GPR18. Eur. J. Med. Chem. 2018, 155, 381-397. https://doi.org/10.1016/j.ejmech.2018.05.050
dc.relation.referencesen[14] Volkov, O.A.; Cosner, C.C.; Brockway, A.J.; Kramer, M.; Booker, M.; Zhong, Sh.; Ketcherside, A.; Wei, Sh.; Longgood, J.; McCoy, M. et al. Identification of Trypanosoma brucei AdoMetDC Inhibitors Using a High-Throughput Mass Spectrometry-Based Assay. ACS Infect. Dis. 2017, 3, 512-526. https://doi:10.1021/acsinfecdis.7b00022
dc.relation.referencesen[15] Litvinchuk, M.B.; Bentya, A.V.; Slyvka, N.Yu.; Vovk, M.V. Synthesis and Functionalization of 2-Alkylidene-5-(bromomethyl)-2,3-dihydro-1,3-thiazole Derivatives. Chem. Heterocycl. Compd. 2018, 54, 559-567. https://doi.org/10.1007/s10593-018-2304-0
dc.relation.referencesen[16] Saliyeva, L.M.; Vas’kevich, R.I.; Slyvka, N.Yu.; Vovk, M.V. The Synthesis and Structural Functionalization of 6-Substituted 2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-ones. J. Org. Pharm. Chem. 2018, 16, 31-41. https://doi.org/10.24959/ophcj.18.940
dc.relation.referencesen[17] Shakh, Y.I.; Karkhut, A.I.; Bolibrukh, K.B.; Polovkovych, S.V. Rehioselektyvnist reaktsii nukleofilnoho zamishchennia mizh 5-zamishchenymy 1,4-naftokhinonamy ta aminotiotriazolamy. Khimiya, tekhnologiya rechovyn ta ih zastosuvannya 2015, 812, 210–217. (in Ukrainian)
dc.relation.referencesen[18] Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, A64, 112-122. http://dx.doi.org/10.1107/S0108767307043930
dc.relation.referencesen[19] Kochergin, P.M.; Bagrii, A.K.; Galenko, A.K.; Kovpak, D.V.; Aleksandrova, E.V. Synthesis of 3-Halogeno Derivatives of Imida-zo[2,1-b]- and benzimidazo[2,1-b][1,3]thiazines. Chem. Heterocycl. Compd. 1997, 33, 882. https://doi.org/10.1007/BF02253051
dc.relation.referencesen[20] Saliyeva, L.; Slyvka, N.; Holota, S.; Grozav, A.; Yakovychuk, N.; Litvinchuk, M.; Vovk, M. Synthesis and Evaluation of Bioac-tivity of (2-Pyridinyloxy)substituted (benzo)imidazo[2,1-b][1,3]thiazines. Biointerface Res. Appl. Chem. 2022, 12, 5031-5044. https://doi.org/10.33263/BRIAC124.50315044
dc.relation.referencesen[21] Orlov, M.A.; Kapitanov, I.V.; Korotkikh, N I.; Shvaika, O.P. Synthesis and Recylization of 2,3,9,10-Tetrahydro-8H-[1,4]Dioxino[2,3-f]-[1,3]Thiazino[3,2-a]Benzimidazolium Salts. Chem. Heterocycl. Compd. 2014, 50, 111-116. https://doi.org/10.1007/s10593-014-1453-z
dc.relation.referencesen[22] Ouasif, L.; Ghoul, M.; Achour, R.; Saadi, M. 3,4-Dihydro-2H-benzo[4,5]imidazo[2,1-b][1,3]thiazin-3-ol. IUCrData 2017, 2, x170429. https://doi.org/10.1107/S2414314617004291
dc.relation.referencesen[23] Gordon, A.J.; Ford, R.A. The Chemist’s Companion; Wiley-Interscience: New York, 1972.
dc.relation.referencesen[24] Novikov, R.V.; Danilkina, N.A.; Balova, I.A. Cyclocondensa-tion of n-(Prop-2-yn-1-yl)- and n-(Penta-2,4-diyn-1-yl)-o-phenylenediamines with Phenyl Isothiocyanate and Carbon Disul-fide. Chem. Heterocycl. Compd. 2011, 47, 758-766. https://doi:10.1007/s10593-011-0831-z
dc.relation.referencesen[25] Burgi, H.-B.; Dunitz, J.D. Structure correlation. Vol.2; VCH: Weinheim, 1994; pp 741-784.
dc.relation.urihttps://doi.org/10.1080/10426507.2015.1119148
dc.relation.urihttps://doi.org/10.1021/acs.joc.9b02276
dc.relation.urihttps://doi.org/10.1016/j.bmcl.2020.127216
dc.relation.urihttps://doi.org/10.1002/ardp.201900271
dc.relation.urihttps://doi.org/10.23939/chcht14.03.327
dc.relation.urihttps://doi.org/10.1002/jhet.4257
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2019.127036
dc.relation.urihttps://doi:10.1016/j.bmcl.2017.10.067
dc.relation.urihttps://doi:10.1016/j.bioorg.2019.02.020
dc.relation.urihttps://doi.org/10.1080/10426507.2015.1135149
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2020.112849
dc.relation.urihttps://doi.org/10.1007/s00044-008-9090-7
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2018.05.050
dc.relation.urihttps://doi:10.1021/acsinfecdis.7b00022
dc.relation.urihttps://doi.org/10.1007/s10593-018-2304-0
dc.relation.urihttps://doi.org/10.24959/ophcj.18.940
dc.relation.urihttp://dx.doi.org/10.1107/S0108767307043930
dc.relation.urihttps://doi.org/10.1007/BF02253051
dc.relation.urihttps://doi.org/10.33263/BRIAC124.50315044
dc.relation.urihttps://doi.org/10.1007/s10593-014-1453-z
dc.relation.urihttps://doi.org/10.1107/S2414314617004291
dc.relation.urihttps://doi:10.1007/s10593-011-0831-z
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Slyvka N., Saliyeva L., Litvinchuk M., Shishkina S., Vovk M., 2023
dc.subject(бензо)імідазо[2
dc.subject1-b][1
dc.subject3]тіазини
dc.subjectреакції нуклеофільного заміщення
dc.subjectреакції елімінування
dc.subjectтіо(ізотіо) ціанато- та азидопохідні
dc.subject(benzo)imidazo[2
dc.subject1-b][1
dc.subject3]thiazines
dc.subjectnucleophilic substitution reaction
dc.subjectelimination reaction
dc.subjectthio (isothio)cyanato and azidoderivatives
dc.titleFeatures of (Benzo)Imidazo[2,1-b][1,3]thiazine Mezylates Reaction with Nucleophilic Reagents
dc.title.alternativeОсобливості взаємодії (бензо)імідазо[2,1-b][1,3]тіазинмезилатів з нуклеофільними реагентами
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2023v17n3_Slyvka_N-Features_of_Benzo_Imidazo_542-548.pdf
Size:
620.49 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2023v17n3_Slyvka_N-Features_of_Benzo_Imidazo_542-548__COVER.png
Size:
536.35 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: