[3+2] Cycloaddition of N-tert-Butyl,a-(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation

dc.citation.epage531
dc.citation.issue3
dc.citation.spage518
dc.contributor.affiliationUniversity of Biskra
dc.contributor.authorKouchkar, Khaoula
dc.contributor.authorBoumedjane, Youcef
dc.contributor.authorHachani, Salah Eddine
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:52:08Z
dc.date.available2024-02-12T08:52:08Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій роботі досліджено регіо- та діастереоселективність [3+2] циклоприєднання (32CA) N трет-бутил,α-(4-трифлуорометил)-фенілнітрону (1) і метакролеїну (2) за допомогою методу DFT на B3LYP/6-31(d) обчислювальному рівні у газовій фазі та в розчиннику дихлорометані. Для виявлення найактивніших центрів у досліджуваних молекулах використовували молекулярний електростатичний потенціал MESP. Було розраховано глобальні і локальні показники реакційної здатності та термодинамічні параметри з метою пояснення регіоселективності та стереоселективності для обраної N-трет реакції. Досліджено можливу хемоселективну орто/мета регіоселективність та стерео- (ендо/екзо) ізомерні канали. Наші теоретичні результати дають важливе пояснення можливих шляхів, пов’язаних з досліджуваною реакцією 32CA.
dc.description.abstractIn this scientific contribution, regio- and diastereo- selectivity of [3+2] cycloaddition (32CA) of N-tert-butyl,α-(4-trifluoromethyl)-phenylnitrone (1) with methacrolein (2) were investigated using DFT method at B3LYP/6-31(d) computational level in gas and dichloromethane solvent. The molecular electrostatic potential MESP was used to show the most active centers in the examined molecules. Global and local reactivity indices as well as thermodynamic parameters have been calculated to explain the regioselectivity and stereoselectivity for the selected reaction. The possible chemoselective ortho/meta regioselectivity and stereo- (endo/exo) isomeric channels were investigated. Our theoretical results give important elucidations for the possible pathways related to the studied 32CA reaction.
dc.format.extent518-531
dc.format.pages14
dc.identifier.citationKouchkar K. [3+2] Cycloaddition of N-tert-Butyl,a-(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation / Khaoula Kouchkar, Youcef Boumedjane, Salah Eddine Hachani // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 518–531.
dc.identifier.citationenKouchkar K. [3+2] Cycloaddition of N-tert-Butyl,a-(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation / Khaoula Kouchkar, Youcef Boumedjane, Salah Eddine Hachani // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 518–531.
dc.identifier.doidoi.org/10.23939/chcht17.03.518
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61283
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley-Interscience: New York, 1984.
dc.relation.references[2] Gothelf, K.V., Jorgensen, K.A.Asymmetric 1,3-Dipolar Cyc-loaddition Reactions. Chem. Rev. 1998, 98, 863-910. http://doi.org/10.1021/cr970324e
dc.relation.references[3] Jasiński, R.A New Insight on the Molecular Mechanism of the Reaction between (Z)-C,N-Diphenylnitrone and 1,2-Bismethylene-3,3,4,4,5,5-hexamethylcyclopentane.J. Mol. Graph. Model. 2020, 94, 107461. http://doi.org/10.1016/j.jmgm.2019.107461
dc.relation.references[4] Jasiński, R.Competition between One-Step and Two-Step Me-chanism in Polar [3 + 2] Cycloadditions of (Z)-C-(3,4,5-Trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-Bromo-1-nitroethenes.Comput. Theor. Chem. 2018, 1125, 77-85. https://doi.org/10.1016/j.comptc.2018.01.009
dc.relation.references[5] Jasiński, R.Nitroacetylene as Dipolarophile in [2 + 3] Cycloaddition Reactions with Allenyl-Type Three-Atom Components: DFT Computational Study. Monatsh. Chem. 2015, 146, 591-599. https://doi.org/10.1007/s00706-014-1389-0
dc.relation.references[6] Jasiński, R.; Jasińska, E.; Dresler, E. A DFT Computational Study of the Molecular Mechanism of [3 + 2] Cycloaddition Reac-tions between Nitroethene and Benzonitrile N-Oxides. J. Mol. Model. 2017, 23, 13. https://doi.org/10.1007/s00894-016-3185-8
dc.relation.references[7] Jasiński, R.Competition between the One-Step and Two-Step, Zwitterionic Mechanisms in the [2+3] Cycloaddition of Gem-Dinitroethene with (Z)-C,N-Diphenylnitrone: A DFT Computation-al Study.Tetrahedron2013, 69, 927-932. https://doi.org/10.1016/j.tet.2012.10.095
dc.relation.references[8] Padwa, A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards Heterocycles and Natural Products; Wiley and Sons: Hoboken, 2003.
dc.relation.references[9] Merino, P. In Science of Synthesis, Vol. 27; Padwa, A., Ed.; George Thieme: New York, 2004.
dc.relation.references[10] Jones, G.O.; Houk, K.N.Predictions of Substituent Effects in Thermal Azide 1,3-Dipolar Cycloadditions:  Implications for Dy-namic Combinatorial (Reversible) and Click (Irreversible) Chemi-stry. J. Org. Chem. 2008, 73, 1333-1342. https://doi.org/10.1021/jo702295d
dc.relation.references[11] Parr, R.G.; Pearson R.G.Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
dc.relation.references[12] Minter, A.R.;, Brennan, B.B.; Mapp, A.K. A Small Molecule Transcriptional Activation Domain. J. Am. Chem. Soc. 2004, 126, 10504-10505. https://doi.org/10.1021/ja0473889
dc.relation.references[13] Chiacchio, U.; Rescifina, A.; Iannazzo, D.;Piperno, A.; Romeo, R.; Borrello, L.; Sciortino, M.T.; Balestrieri, E.; Macchi, B.; Mastino, A. et al.Phosphonated Carbocyclic 2‘-Oxa-3‘-azanucleosides as New Antiretroviral Agents. J. Med. Chem. 2007, 50, 3747-3750. https://doi.org/10.1021/jm070285r
dc.relation.references[14] Ding, P.; Miller, M.; Chen, Y.;Helquist, P.; Oliver, A.J.; Wiest, O.Syntheses of Conformationally Constricted Molecules as Potential NAALADase/PSMA Inhibitors. Org. Lett. 2004, 6, 1805-1808. https://doi.org/10.1021/ol049473r
dc.relation.references[15] Wess, G., Kramer, W., Schuber, G.;Enhsen, A.; Baringhaus, K.-H.; Glombik, H.; Müllner, S.; Bock, K.; Kleine, H.; John, M. et al. Synthesis of Bile Acid – Drug Conjugates: Potential Drug – Shuttles for Liver Specific Targeting. Tetrahedron. Lett. 1993, 34, 819-822. https://doi.org/10.1016/0040-4039(93)89021-H
dc.relation.references[16] Merino, P.; Tejero, T.; Unzurrunzaga, F.J.; Franco, S.; Chiac-chio, U.; Saita, M.G.; Iannazzo, D.; Piperno, A.; Romeo, G. An Efficient Approach to Enantiomeric Isoxazolidinyl Analogues of Tiazofurin Based on Nitrone Cycloadditions.Tetrahedron Asymme-try2005, 16, 3865-3876. https://doi.org/10.1016/j.tetasy.2005.11.004
dc.relation.references[17] Mannucci, V.; Cordero, F.M.; Piperno, A.;Romeo, G.; Brandi, A. Diastereoselective Synthesis of a Collection of New Homonuc-leoside Mimetics Containing Pyrrolo[1,2-b]isoxazoline and Pyrroli-dine Rings. Tetrahedron Asymmetry2008, 19, 1204-1209. https://doi.org/10.1016/j.tetasy.2008.04.028
dc.relation.references[18] Romeo, R.; Giofre, S.V.; Macchi, B.;Balestrieri, E.; Mastino, A.; Merino, P.; Carnovale, C.; Romeo, G.; Chiacchio, U. Truncated Reverse Isoxazolidinyl Nucleosides: A New Class of Allosteric HIV-1 Reverse Transcriptase Inhibitors. ChemMedChem. 2012, 7, 565-569. https://doi.org/10.1002/cmdc.201200022
dc.relation.references[19] Kiguchi, T.; Shirakawa, M.; Honda, R.;Ninomiya, I.; Naito, T. Total Synthesis of (+)-Azimic Acid, (+)-Julifloridine, and Proposed Structure of N-Methyljulifloridine via Cycloaddition of Nitrone to a Chiral Dipolarophile. Tetrahedron1998, 54, 15589-15606. https://doi.org/10.1016/S0040-4020(98)01012-6
dc.relation.references[20] Cardona, F.; Moreno, G.; Guarna, F.;Vogel, P.; Schuetz, C.; Merino, P.; Goti, A. New Concise Total Synthesis of (+)-Lentiginosine and Some Structural Analogues. J. Org. Chem.2005, 70, 6552-6555. https://doi.org/10.1021/jo0509408
dc.relation.references[21] Delso, I.; Tejero, T.; Goti, A.; Merino, P. Synthesis of d-Arabinose-Derived Polyhydroxylated Pyrrolidine, Indolizidine and Pyrrolizidine Alkaloids. Total Synthesis of Hyacinthacine A2. Tetrahedron2010, 66, 1220-1227. https://doi.org/10.1016/j.tet.2009.12.030
dc.relation.references[22] Peng, J.; Jiang, D.; Lin, W.; Chen, Y. Palladium-Catalyzed Sequential One-Pot Reaction of Aryl Bromides with O-Homoallylhydroxylamines: Synthesis of N-Aryl-β-amino Alcohols. Org. Biomol. Chem. 2007, 5, 1391-1396. https://doi.org/10.1039/B701509G
dc.relation.references[23] Andrade, M.; Barros, M.T.; Pinto, R.C. Clean and Sustainable Methodologies for the Synthesis of Isoxazolidines. In Heterocyclic-Targets in Advanced Organic Synthesis; Carreiras, M. C.; Marco-Contelles, J., Eds.; Research Signpost: Trivandrum, India, 2011; pp 51-67.
dc.relation.references[24] Bădoiu, A.; Kündig, E.P.Electronic Effects in 1,3-Dipolar Cycloaddition Reactions of N-Alkyl and N-Benzyl Nitrones with Dipolarophiles. Org. Biomol. Chem. 2012,10, 114-121. https://doi.org/10.1039/C1OB06144E
dc.relation.references[25] Frisch, M.J., Trucks, G.W., Schlegel, H.B. Gaussian 09, Revision D.01, CT 2009.
dc.relation.references[26] Jasiński, R.; Koifman, O.I.; Barański, A. A DFT Study on the Regioselectivity and Molecular Mechanism of Nitroethene [2 + 3] Cycloaddition to (Z)-C,N-Diphenylnitrone and C,C,N-Triphenylnitrone. Mendeleev Commun.2011, 21, 262-263. https://doi.org/10.1016/j.mencom.2011.09.010
dc.relation.references[27] Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. A DFT Study of the Ionic [2+2] Cycloaddition Reactions of Keteniminium Cations with Terminal Acetylenes. Tetrahedron2015, 71, 2421-2427. https://doi.org/10.1016/j.tet.2015.02.070
dc.relation.references[28] Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297-306. https://doi.org/10.1021/ct700248k
dc.relation.references[29] Cances, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Back-ground and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032. https://doi.org/10.1063/1.474659
dc.relation.references[30] Cossi, M.; Barone, V.; Cammi, R.;Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327-335. https://doi.org/10.1016/0009-2614(96)00349-1
dc.relation.references[31] Barone, V.; Cossi, M.; Tomasi, J. Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model. J. Comput. Chem. 1998, 19, 404-417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
dc.relation.references[32] Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415-32428. https://doi.org/10.1039/C4RA04280H
dc.relation.references[33] Mayer, I. Bond Orders and Valences from ab Initio Wave Functions. Int. J. Quantum. Chem. 1986, 29, 477-483. https://doi.org/10.1002/qua.560290320
dc.relation.references[34] Keresztury, G.; Holly, S.; Besenyei, G.; Varga, J.; Wang, A.; Durig, J.R. Vibrational Spectra of Monothiocarbamates-II. IR and Raman Spectra, Vibrational Assignment, Conformational Analysis and AB Initio Calculations of S-Methyl-N,N-dimethylthiocarbamate. Spectrochimica Acta Part A: Molecular Spectroscopy. 1993, 49, 2007-2017, 2019-2026. https://doi.org/10.1016/S0584-8539(09)91012-1
dc.relation.references[35] Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interac-tions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899-926. https://doi.org/10.1021/cr00088a005
dc.relation.references[36] Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
dc.relation.references[37] Zhao, Y.; Truhlar, D.G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions:  The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. J. Phys. Chem. 2004, 108, 6908-6918. https://doi.org/10.1021/jp048147q
dc.relation.references[38] Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161-4163. https://doi.org/10.1021/j100717a029
dc.relation.references[39] Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
dc.relation.references[40] Parr, R.G.; Yang, W. In Density Functional Theory of Atoms and Molecules; Oxford University: New York, 1989.
dc.relation.references[41] Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reac-tions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615-4624. https://doi.org/10.1021/jo800572a
dc.relation.references[42] Yang, W.; Mortier, W.J. The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. J. Am. Chem. Soc. 1986, 108, 5708-5711. https://doi.org/10.1021/ja00279a008
dc.relation.references[43] Domingo, L.R.; Aurell, M.J.; Pérez, P.;Contreras, R. Quantita-tive Characterization of the Local Electrophilicity of Organic Mole-cules. Understanding the Regioselectivity on Diels−Alder Reac-tions. J. Phys. Chem. 2002, 106, 6871-6875. https://doi.org/10.1021/jp020715j
dc.relation.references[44] Pérez, P.; Domingo, L.R.; Duque-Norna, M.;Chamorro, E. A Condensed-to-Atom Nucleophilicity Index. An Application to the Director Effects on the Electrophilic Aromatic Substitutions.J. Mol. Struct. Theochem. 2009, 895, 86-91. https://doi.org/10.1016/j.theochem.2008.10.014
dc.relation.references[45]Mloston, G.; Jasinski, R.; Kula, K.;Heimgartner, H. A DFT Study on the Barton–Kellogg Reaction – The Molecular Mechanism of the Formation of Thiiranes in the Reaction between Diphenyldia-zomethane and Diaryl Thioketones. Eur. J. Org. Chem. 2020, 2020, 176-182. https://doi.org/10.1002/ejoc.201901443
dc.relation.references[46] Sustmann, R.; Shubert, R. Photoelektronenspektroskopische bestimmung von substituenten-effekten II. α,β-ungesättigte Carbonester. Tetrahedron Lett.1972, 13, 4271-4274. https://doi.org/10.1016/S0040-4039(01)94292-3
dc.relation.references[47] Šponer, J. Hobza, P. DNA Base Amino Groups and their Role in Molecular Interactions: Ab Initio and Preliminary Density Functional Theory Calculations. Int. J. Quantum. Chem. 1996, 57, 959-970.https://doi.org/10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S
dc.relation.references[48] Murray, J.S.; Sen, K. Molecular electrostatic potentials: concepts and 399 applications; Elsevier: Amsterdam, 1996.
dc.relation.references[49] Marakchi, K.; Kabbaj, O. K.; Komiha, N. Etude DFT du méca-nisme des réactions de cycloaddition dipolaire-1,3 de la C,N-diphénylnitrone avec des dipolarophiles fluorés de type éthylénique et acétylénique. J. Fluor. Chem. 2002, 114, 81-89. https://doi.org/10.1016/S0022-1139(01)00570-X
dc.relation.references[50] Marakchi, K.; Abou El Makarim, H.; Kabbaj, O. K.;Komiha, N. Etude Theorique du Mecanisme de la Reaction de Cycloaddition Dipolaire-1,3 du 3-Fluoro-3-Trifluoromethyl Prop-2-Enoate de Methyle Avec la Pyrroline-1-Oxyde. Phys. Chem. News. 2010,52, 128-136.
dc.relation.references[51] Marakchi, K.; Ghailane, R.; Kabbaj, O.K.; Komiha, N. DFT Study of the Mechanism and Stereoselectivity of the 1,3-Dipolar Cycloaddition between Pyrroline-1-oxide and Methyl Crotonate. J. Chem. Sci. 2014, 126, 283-292. https://doi.org/10.1007/s12039-013-0563-y
dc.relation.references[52] Domingo, L.R. Theoretical Study of the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides. A DFT Study of Reaction between Trifluoromethyl Thiomethyl Azomethine Ylide and Acronitrile. J. Org. Chem. 1999, 64, 3922-3929. https://doi.org/10.1021/jo9822683
dc.relation.referencesen[1] Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley-Interscience: New York, 1984.
dc.relation.referencesen[2] Gothelf, K.V., Jorgensen, K.A.Asymmetric 1,3-Dipolar Cyc-loaddition Reactions. Chem. Rev. 1998, 98, 863-910. http://doi.org/10.1021/cr970324e
dc.relation.referencesen[3] Jasiński, R.A New Insight on the Molecular Mechanism of the Reaction between (Z)-C,N-Diphenylnitrone and 1,2-Bismethylene-3,3,4,4,5,5-hexamethylcyclopentane.J. Mol. Graph. Model. 2020, 94, 107461. http://doi.org/10.1016/j.jmgm.2019.107461
dc.relation.referencesen[4] Jasiński, R.Competition between One-Step and Two-Step Me-chanism in Polar [3 + 2] Cycloadditions of (Z)-C-(3,4,5-Trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-Bromo-1-nitroethenes.Comput. Theor. Chem. 2018, 1125, 77-85. https://doi.org/10.1016/j.comptc.2018.01.009
dc.relation.referencesen[5] Jasiński, R.Nitroacetylene as Dipolarophile in [2 + 3] Cycloaddition Reactions with Allenyl-Type Three-Atom Components: DFT Computational Study. Monatsh. Chem. 2015, 146, 591-599. https://doi.org/10.1007/s00706-014-1389-0
dc.relation.referencesen[6] Jasiński, R.; Jasińska, E.; Dresler, E. A DFT Computational Study of the Molecular Mechanism of [3 + 2] Cycloaddition Reac-tions between Nitroethene and Benzonitrile N-Oxides. J. Mol. Model. 2017, 23, 13. https://doi.org/10.1007/s00894-016-3185-8
dc.relation.referencesen[7] Jasiński, R.Competition between the One-Step and Two-Step, Zwitterionic Mechanisms in the [2+3] Cycloaddition of Gem-Dinitroethene with (Z)-C,N-Diphenylnitrone: A DFT Computation-al Study.Tetrahedron2013, 69, 927-932. https://doi.org/10.1016/j.tet.2012.10.095
dc.relation.referencesen[8] Padwa, A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards Heterocycles and Natural Products; Wiley and Sons: Hoboken, 2003.
dc.relation.referencesen[9] Merino, P. In Science of Synthesis, Vol. 27; Padwa, A., Ed.; George Thieme: New York, 2004.
dc.relation.referencesen[10] Jones, G.O.; Houk, K.N.Predictions of Substituent Effects in Thermal Azide 1,3-Dipolar Cycloadditions:  Implications for Dy-namic Combinatorial (Reversible) and Click (Irreversible) Chemi-stry. J. Org. Chem. 2008, 73, 1333-1342. https://doi.org/10.1021/jo702295d
dc.relation.referencesen[11] Parr, R.G.; Pearson R.G.Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
dc.relation.referencesen[12] Minter, A.R.;, Brennan, B.B.; Mapp, A.K. A Small Molecule Transcriptional Activation Domain. J. Am. Chem. Soc. 2004, 126, 10504-10505. https://doi.org/10.1021/ja0473889
dc.relation.referencesen[13] Chiacchio, U.; Rescifina, A.; Iannazzo, D.;Piperno, A.; Romeo, R.; Borrello, L.; Sciortino, M.T.; Balestrieri, E.; Macchi, B.; Mastino, A. et al.Phosphonated Carbocyclic 2‘-Oxa-3‘-azanucleosides as New Antiretroviral Agents. J. Med. Chem. 2007, 50, 3747-3750. https://doi.org/10.1021/jm070285r
dc.relation.referencesen[14] Ding, P.; Miller, M.; Chen, Y.;Helquist, P.; Oliver, A.J.; Wiest, O.Syntheses of Conformationally Constricted Molecules as Potential NAALADase/PSMA Inhibitors. Org. Lett. 2004, 6, 1805-1808. https://doi.org/10.1021/ol049473r
dc.relation.referencesen[15] Wess, G., Kramer, W., Schuber, G.;Enhsen, A.; Baringhaus, K.-H.; Glombik, H.; Müllner, S.; Bock, K.; Kleine, H.; John, M. et al. Synthesis of Bile Acid – Drug Conjugates: Potential Drug – Shuttles for Liver Specific Targeting. Tetrahedron. Lett. 1993, 34, 819-822. https://doi.org/10.1016/0040-4039(93)89021-H
dc.relation.referencesen[16] Merino, P.; Tejero, T.; Unzurrunzaga, F.J.; Franco, S.; Chiac-chio, U.; Saita, M.G.; Iannazzo, D.; Piperno, A.; Romeo, G. An Efficient Approach to Enantiomeric Isoxazolidinyl Analogues of Tiazofurin Based on Nitrone Cycloadditions.Tetrahedron Asymme-try2005, 16, 3865-3876. https://doi.org/10.1016/j.tetasy.2005.11.004
dc.relation.referencesen[17] Mannucci, V.; Cordero, F.M.; Piperno, A.;Romeo, G.; Brandi, A. Diastereoselective Synthesis of a Collection of New Homonuc-leoside Mimetics Containing Pyrrolo[1,2-b]isoxazoline and Pyrroli-dine Rings. Tetrahedron Asymmetry2008, 19, 1204-1209. https://doi.org/10.1016/j.tetasy.2008.04.028
dc.relation.referencesen[18] Romeo, R.; Giofre, S.V.; Macchi, B.;Balestrieri, E.; Mastino, A.; Merino, P.; Carnovale, C.; Romeo, G.; Chiacchio, U. Truncated Reverse Isoxazolidinyl Nucleosides: A New Class of Allosteric HIV-1 Reverse Transcriptase Inhibitors. ChemMedChem. 2012, 7, 565-569. https://doi.org/10.1002/cmdc.201200022
dc.relation.referencesen[19] Kiguchi, T.; Shirakawa, M.; Honda, R.;Ninomiya, I.; Naito, T. Total Synthesis of (+)-Azimic Acid, (+)-Julifloridine, and Proposed Structure of N-Methyljulifloridine via Cycloaddition of Nitrone to a Chiral Dipolarophile. Tetrahedron1998, 54, 15589-15606. https://doi.org/10.1016/S0040-4020(98)01012-6
dc.relation.referencesen[20] Cardona, F.; Moreno, G.; Guarna, F.;Vogel, P.; Schuetz, C.; Merino, P.; Goti, A. New Concise Total Synthesis of (+)-Lentiginosine and Some Structural Analogues. J. Org. Chem.2005, 70, 6552-6555. https://doi.org/10.1021/jo0509408
dc.relation.referencesen[21] Delso, I.; Tejero, T.; Goti, A.; Merino, P. Synthesis of d-Arabinose-Derived Polyhydroxylated Pyrrolidine, Indolizidine and Pyrrolizidine Alkaloids. Total Synthesis of Hyacinthacine A2. Tetrahedron2010, 66, 1220-1227. https://doi.org/10.1016/j.tet.2009.12.030
dc.relation.referencesen[22] Peng, J.; Jiang, D.; Lin, W.; Chen, Y. Palladium-Catalyzed Sequential One-Pot Reaction of Aryl Bromides with O-Homoallylhydroxylamines: Synthesis of N-Aryl-b-amino Alcohols. Org. Biomol. Chem. 2007, 5, 1391-1396. https://doi.org/10.1039/B701509G
dc.relation.referencesen[23] Andrade, M.; Barros, M.T.; Pinto, R.C. Clean and Sustainable Methodologies for the Synthesis of Isoxazolidines. In Heterocyclic-Targets in Advanced Organic Synthesis; Carreiras, M. C.; Marco-Contelles, J., Eds.; Research Signpost: Trivandrum, India, 2011; pp 51-67.
dc.relation.referencesen[24] Bădoiu, A.; Kündig, E.P.Electronic Effects in 1,3-Dipolar Cycloaddition Reactions of N-Alkyl and N-Benzyl Nitrones with Dipolarophiles. Org. Biomol. Chem. 2012,10, 114-121. https://doi.org/10.1039/P.1OB06144E
dc.relation.referencesen[25] Frisch, M.J., Trucks, G.W., Schlegel, H.B. Gaussian 09, Revision D.01, CT 2009.
dc.relation.referencesen[26] Jasiński, R.; Koifman, O.I.; Barański, A. A DFT Study on the Regioselectivity and Molecular Mechanism of Nitroethene [2 + 3] Cycloaddition to (Z)-C,N-Diphenylnitrone and C,C,N-Triphenylnitrone. Mendeleev Commun.2011, 21, 262-263. https://doi.org/10.1016/j.mencom.2011.09.010
dc.relation.referencesen[27] Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. A DFT Study of the Ionic [2+2] Cycloaddition Reactions of Keteniminium Cations with Terminal Acetylenes. Tetrahedron2015, 71, 2421-2427. https://doi.org/10.1016/j.tet.2015.02.070
dc.relation.referencesen[28] Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297-306. https://doi.org/10.1021/ct700248k
dc.relation.referencesen[29] Cances, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Back-ground and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032. https://doi.org/10.1063/1.474659
dc.relation.referencesen[30] Cossi, M.; Barone, V.; Cammi, R.;Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327-335. https://doi.org/10.1016/0009-2614(96)00349-1
dc.relation.referencesen[31] Barone, V.; Cossi, M.; Tomasi, J. Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model. J. Comput. Chem. 1998, 19, 404-417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
dc.relation.referencesen[32] Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415-32428. https://doi.org/10.1039/P.4RA04280H
dc.relation.referencesen[33] Mayer, I. Bond Orders and Valences from ab Initio Wave Functions. Int. J. Quantum. Chem. 1986, 29, 477-483. https://doi.org/10.1002/qua.560290320
dc.relation.referencesen[34] Keresztury, G.; Holly, S.; Besenyei, G.; Varga, J.; Wang, A.; Durig, J.R. Vibrational Spectra of Monothiocarbamates-II. IR and Raman Spectra, Vibrational Assignment, Conformational Analysis and AB Initio Calculations of S-Methyl-N,N-dimethylthiocarbamate. Spectrochimica Acta Part A: Molecular Spectroscopy. 1993, 49, 2007-2017, 2019-2026. https://doi.org/10.1016/S0584-8539(09)91012-1
dc.relation.referencesen[35] Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interac-tions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899-926. https://doi.org/10.1021/cr00088a005
dc.relation.referencesen[36] Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
dc.relation.referencesen[37] Zhao, Y.; Truhlar, D.G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions:  The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. J. Phys. Chem. 2004, 108, 6908-6918. https://doi.org/10.1021/jp048147q
dc.relation.referencesen[38] Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161-4163. https://doi.org/10.1021/j100717a029
dc.relation.referencesen[39] Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
dc.relation.referencesen[40] Parr, R.G.; Yang, W. In Density Functional Theory of Atoms and Molecules; Oxford University: New York, 1989.
dc.relation.referencesen[41] Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reac-tions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615-4624. https://doi.org/10.1021/jo800572a
dc.relation.referencesen[42] Yang, W.; Mortier, W.J. The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. J. Am. Chem. Soc. 1986, 108, 5708-5711. https://doi.org/10.1021/ja00279a008
dc.relation.referencesen[43] Domingo, L.R.; Aurell, M.J.; Pérez, P.;Contreras, R. Quantita-tive Characterization of the Local Electrophilicity of Organic Mole-cules. Understanding the Regioselectivity on Diels−Alder Reac-tions. J. Phys. Chem. 2002, 106, 6871-6875. https://doi.org/10.1021/jp020715j
dc.relation.referencesen[44] Pérez, P.; Domingo, L.R.; Duque-Norna, M.;Chamorro, E. A Condensed-to-Atom Nucleophilicity Index. An Application to the Director Effects on the Electrophilic Aromatic Substitutions.J. Mol. Struct. Theochem. 2009, 895, 86-91. https://doi.org/10.1016/j.theochem.2008.10.014
dc.relation.referencesen[45]Mloston, G.; Jasinski, R.; Kula, K.;Heimgartner, H. A DFT Study on the Barton–Kellogg Reaction – The Molecular Mechanism of the Formation of Thiiranes in the Reaction between Diphenyldia-zomethane and Diaryl Thioketones. Eur. J. Org. Chem. 2020, 2020, 176-182. https://doi.org/10.1002/ejoc.201901443
dc.relation.referencesen[46] Sustmann, R.; Shubert, R. Photoelektronenspektroskopische bestimmung von substituenten-effekten II. α,b-ungesättigte Carbonester. Tetrahedron Lett.1972, 13, 4271-4274. https://doi.org/10.1016/S0040-4039(01)94292-3
dc.relation.referencesen[47] Šponer, J. Hobza, P. DNA Base Amino Groups and their Role in Molecular Interactions: Ab Initio and Preliminary Density Functional Theory Calculations. Int. J. Quantum. Chem. 1996, 57, 959-970.https://doi.org/10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S
dc.relation.referencesen[48] Murray, J.S.; Sen, K. Molecular electrostatic potentials: concepts and 399 applications; Elsevier: Amsterdam, 1996.
dc.relation.referencesen[49] Marakchi, K.; Kabbaj, O. K.; Komiha, N. Etude DFT du méca-nisme des réactions de cycloaddition dipolaire-1,3 de la C,N-diphénylnitrone avec des dipolarophiles fluorés de type éthylénique et acétylénique. J. Fluor. Chem. 2002, 114, 81-89. https://doi.org/10.1016/S0022-1139(01)00570-X
dc.relation.referencesen[50] Marakchi, K.; Abou El Makarim, H.; Kabbaj, O. K.;Komiha, N. Etude Theorique du Mecanisme de la Reaction de Cycloaddition Dipolaire-1,3 du 3-Fluoro-3-Trifluoromethyl Prop-2-Enoate de Methyle Avec la Pyrroline-1-Oxyde. Phys. Chem. News. 2010,52, 128-136.
dc.relation.referencesen[51] Marakchi, K.; Ghailane, R.; Kabbaj, O.K.; Komiha, N. DFT Study of the Mechanism and Stereoselectivity of the 1,3-Dipolar Cycloaddition between Pyrroline-1-oxide and Methyl Crotonate. J. Chem. Sci. 2014, 126, 283-292. https://doi.org/10.1007/s12039-013-0563-y
dc.relation.referencesen[52] Domingo, L.R. Theoretical Study of the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides. A DFT Study of Reaction between Trifluoromethyl Thiomethyl Azomethine Ylide and Acronitrile. J. Org. Chem. 1999, 64, 3922-3929. https://doi.org/10.1021/jo9822683
dc.relation.urihttp://doi.org/10.1021/cr970324e
dc.relation.urihttp://doi.org/10.1016/j.jmgm.2019.107461
dc.relation.urihttps://doi.org/10.1016/j.comptc.2018.01.009
dc.relation.urihttps://doi.org/10.1007/s00706-014-1389-0
dc.relation.urihttps://doi.org/10.1007/s00894-016-3185-8
dc.relation.urihttps://doi.org/10.1016/j.tet.2012.10.095
dc.relation.urihttps://doi.org/10.1021/jo702295d
dc.relation.urihttps://doi.org/10.1021/ja00364a005
dc.relation.urihttps://doi.org/10.1021/ja0473889
dc.relation.urihttps://doi.org/10.1021/jm070285r
dc.relation.urihttps://doi.org/10.1021/ol049473r
dc.relation.urihttps://doi.org/10.1016/0040-4039(93)89021-H
dc.relation.urihttps://doi.org/10.1016/j.tetasy.2005.11.004
dc.relation.urihttps://doi.org/10.1016/j.tetasy.2008.04.028
dc.relation.urihttps://doi.org/10.1002/cmdc.201200022
dc.relation.urihttps://doi.org/10.1016/S0040-4020(98)01012-6
dc.relation.urihttps://doi.org/10.1021/jo0509408
dc.relation.urihttps://doi.org/10.1016/j.tet.2009.12.030
dc.relation.urihttps://doi.org/10.1039/B701509G
dc.relation.urihttps://doi.org/10.1039/C1OB06144E
dc.relation.urihttps://doi.org/10.1016/j.mencom.2011.09.010
dc.relation.urihttps://doi.org/10.1016/j.tet.2015.02.070
dc.relation.urihttps://doi.org/10.1021/ct700248k
dc.relation.urihttps://doi.org/10.1063/1.474659
dc.relation.urihttps://doi.org/10.1016/0009-2614(96)00349-1
dc.relation.urihttps://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
dc.relation.urihttps://doi.org/10.1039/C4RA04280H
dc.relation.urihttps://doi.org/10.1002/qua.560290320
dc.relation.urihttps://doi.org/10.1016/S0584-8539(09)91012-1
dc.relation.urihttps://doi.org/10.1021/cr00088a005
dc.relation.urihttps://doi.org/10.1063/1.449486
dc.relation.urihttps://doi.org/10.1021/jp048147q
dc.relation.urihttps://doi.org/10.1021/j100717a029
dc.relation.urihttps://doi.org/10.1021/ja983494x
dc.relation.urihttps://doi.org/10.1021/jo800572a
dc.relation.urihttps://doi.org/10.1021/ja00279a008
dc.relation.urihttps://doi.org/10.1021/jp020715j
dc.relation.urihttps://doi.org/10.1016/j.theochem.2008.10.014
dc.relation.urihttps://doi.org/10.1002/ejoc.201901443
dc.relation.urihttps://doi.org/10.1016/S0040-4039(01)94292-3
dc.relation.urihttps://doi.org/10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S
dc.relation.urihttps://doi.org/10.1016/S0022-1139(01)00570-X
dc.relation.urihttps://doi.org/10.1007/s12039-013-0563-y
dc.relation.urihttps://doi.org/10.1021/jo9822683
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kouchkar K., Boumedjane Y., Hachani S. E., 2023
dc.subject[3+2] циклоприєднання
dc.subjectN-третбутил
dc.subjectα-(4-трифлуорометил)-феніл
dc.subjectметакролеїн
dc.subjectDFT
dc.subjectрегіоселективність
dc.subjectстереоселективність
dc.subject[3+2] cycloaddition
dc.subjectN-tert-butyl
dc.subjectα-(4-trifluoromethyl)-phenyl
dc.subjectmethacrolein
dc.subjectDFT
dc.subjectregioselectivity
dc.subjectstereoselectivity
dc.title[3+2] Cycloaddition of N-tert-Butyl,a-(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation
dc.title.alternative[3+2] Циклоприєднання N-трет-бутил,α-(4-трифлуорометил)-фенілнітрону з метакролеїном: теоретичне дослідження
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2023v17n3_Kouchkar_K-3_2_Cycloaddition_of_518-531.pdf
Size:
4.77 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2023v17n3_Kouchkar_K-3_2_Cycloaddition_of_518-531__COVER.png
Size:
546.11 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: