[3+2] Cycloaddition of N-tert-Butyl,a-(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation
dc.citation.epage | 531 | |
dc.citation.issue | 3 | |
dc.citation.spage | 518 | |
dc.contributor.affiliation | University of Biskra | |
dc.contributor.author | Kouchkar, Khaoula | |
dc.contributor.author | Boumedjane, Youcef | |
dc.contributor.author | Hachani, Salah Eddine | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:52:08Z | |
dc.date.available | 2024-02-12T08:52:08Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У цій роботі досліджено регіо- та діастереоселективність [3+2] циклоприєднання (32CA) N трет-бутил,α-(4-трифлуорометил)-фенілнітрону (1) і метакролеїну (2) за допомогою методу DFT на B3LYP/6-31(d) обчислювальному рівні у газовій фазі та в розчиннику дихлорометані. Для виявлення найактивніших центрів у досліджуваних молекулах використовували молекулярний електростатичний потенціал MESP. Було розраховано глобальні і локальні показники реакційної здатності та термодинамічні параметри з метою пояснення регіоселективності та стереоселективності для обраної N-трет реакції. Досліджено можливу хемоселективну орто/мета регіоселективність та стерео- (ендо/екзо) ізомерні канали. Наші теоретичні результати дають важливе пояснення можливих шляхів, пов’язаних з досліджуваною реакцією 32CA. | |
dc.description.abstract | In this scientific contribution, regio- and diastereo- selectivity of [3+2] cycloaddition (32CA) of N-tert-butyl,α-(4-trifluoromethyl)-phenylnitrone (1) with methacrolein (2) were investigated using DFT method at B3LYP/6-31(d) computational level in gas and dichloromethane solvent. The molecular electrostatic potential MESP was used to show the most active centers in the examined molecules. Global and local reactivity indices as well as thermodynamic parameters have been calculated to explain the regioselectivity and stereoselectivity for the selected reaction. The possible chemoselective ortho/meta regioselectivity and stereo- (endo/exo) isomeric channels were investigated. Our theoretical results give important elucidations for the possible pathways related to the studied 32CA reaction. | |
dc.format.extent | 518-531 | |
dc.format.pages | 14 | |
dc.identifier.citation | Kouchkar K. [3+2] Cycloaddition of N-tert-Butyl,a-(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation / Khaoula Kouchkar, Youcef Boumedjane, Salah Eddine Hachani // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 518–531. | |
dc.identifier.citationen | Kouchkar K. [3+2] Cycloaddition of N-tert-Butyl,a-(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation / Khaoula Kouchkar, Youcef Boumedjane, Salah Eddine Hachani // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 518–531. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.518 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61283 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley-Interscience: New York, 1984. | |
dc.relation.references | [2] Gothelf, K.V., Jorgensen, K.A.Asymmetric 1,3-Dipolar Cyc-loaddition Reactions. Chem. Rev. 1998, 98, 863-910. http://doi.org/10.1021/cr970324e | |
dc.relation.references | [3] Jasiński, R.A New Insight on the Molecular Mechanism of the Reaction between (Z)-C,N-Diphenylnitrone and 1,2-Bismethylene-3,3,4,4,5,5-hexamethylcyclopentane.J. Mol. Graph. Model. 2020, 94, 107461. http://doi.org/10.1016/j.jmgm.2019.107461 | |
dc.relation.references | [4] Jasiński, R.Competition between One-Step and Two-Step Me-chanism in Polar [3 + 2] Cycloadditions of (Z)-C-(3,4,5-Trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-Bromo-1-nitroethenes.Comput. Theor. Chem. 2018, 1125, 77-85. https://doi.org/10.1016/j.comptc.2018.01.009 | |
dc.relation.references | [5] Jasiński, R.Nitroacetylene as Dipolarophile in [2 + 3] Cycloaddition Reactions with Allenyl-Type Three-Atom Components: DFT Computational Study. Monatsh. Chem. 2015, 146, 591-599. https://doi.org/10.1007/s00706-014-1389-0 | |
dc.relation.references | [6] Jasiński, R.; Jasińska, E.; Dresler, E. A DFT Computational Study of the Molecular Mechanism of [3 + 2] Cycloaddition Reac-tions between Nitroethene and Benzonitrile N-Oxides. J. Mol. Model. 2017, 23, 13. https://doi.org/10.1007/s00894-016-3185-8 | |
dc.relation.references | [7] Jasiński, R.Competition between the One-Step and Two-Step, Zwitterionic Mechanisms in the [2+3] Cycloaddition of Gem-Dinitroethene with (Z)-C,N-Diphenylnitrone: A DFT Computation-al Study.Tetrahedron2013, 69, 927-932. https://doi.org/10.1016/j.tet.2012.10.095 | |
dc.relation.references | [8] Padwa, A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards Heterocycles and Natural Products; Wiley and Sons: Hoboken, 2003. | |
dc.relation.references | [9] Merino, P. In Science of Synthesis, Vol. 27; Padwa, A., Ed.; George Thieme: New York, 2004. | |
dc.relation.references | [10] Jones, G.O.; Houk, K.N.Predictions of Substituent Effects in Thermal Azide 1,3-Dipolar Cycloadditions: Implications for Dy-namic Combinatorial (Reversible) and Click (Irreversible) Chemi-stry. J. Org. Chem. 2008, 73, 1333-1342. https://doi.org/10.1021/jo702295d | |
dc.relation.references | [11] Parr, R.G.; Pearson R.G.Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005 | |
dc.relation.references | [12] Minter, A.R.;, Brennan, B.B.; Mapp, A.K. A Small Molecule Transcriptional Activation Domain. J. Am. Chem. Soc. 2004, 126, 10504-10505. https://doi.org/10.1021/ja0473889 | |
dc.relation.references | [13] Chiacchio, U.; Rescifina, A.; Iannazzo, D.;Piperno, A.; Romeo, R.; Borrello, L.; Sciortino, M.T.; Balestrieri, E.; Macchi, B.; Mastino, A. et al.Phosphonated Carbocyclic 2‘-Oxa-3‘-azanucleosides as New Antiretroviral Agents. J. Med. Chem. 2007, 50, 3747-3750. https://doi.org/10.1021/jm070285r | |
dc.relation.references | [14] Ding, P.; Miller, M.; Chen, Y.;Helquist, P.; Oliver, A.J.; Wiest, O.Syntheses of Conformationally Constricted Molecules as Potential NAALADase/PSMA Inhibitors. Org. Lett. 2004, 6, 1805-1808. https://doi.org/10.1021/ol049473r | |
dc.relation.references | [15] Wess, G., Kramer, W., Schuber, G.;Enhsen, A.; Baringhaus, K.-H.; Glombik, H.; Müllner, S.; Bock, K.; Kleine, H.; John, M. et al. Synthesis of Bile Acid – Drug Conjugates: Potential Drug – Shuttles for Liver Specific Targeting. Tetrahedron. Lett. 1993, 34, 819-822. https://doi.org/10.1016/0040-4039(93)89021-H | |
dc.relation.references | [16] Merino, P.; Tejero, T.; Unzurrunzaga, F.J.; Franco, S.; Chiac-chio, U.; Saita, M.G.; Iannazzo, D.; Piperno, A.; Romeo, G. An Efficient Approach to Enantiomeric Isoxazolidinyl Analogues of Tiazofurin Based on Nitrone Cycloadditions.Tetrahedron Asymme-try2005, 16, 3865-3876. https://doi.org/10.1016/j.tetasy.2005.11.004 | |
dc.relation.references | [17] Mannucci, V.; Cordero, F.M.; Piperno, A.;Romeo, G.; Brandi, A. Diastereoselective Synthesis of a Collection of New Homonuc-leoside Mimetics Containing Pyrrolo[1,2-b]isoxazoline and Pyrroli-dine Rings. Tetrahedron Asymmetry2008, 19, 1204-1209. https://doi.org/10.1016/j.tetasy.2008.04.028 | |
dc.relation.references | [18] Romeo, R.; Giofre, S.V.; Macchi, B.;Balestrieri, E.; Mastino, A.; Merino, P.; Carnovale, C.; Romeo, G.; Chiacchio, U. Truncated Reverse Isoxazolidinyl Nucleosides: A New Class of Allosteric HIV-1 Reverse Transcriptase Inhibitors. ChemMedChem. 2012, 7, 565-569. https://doi.org/10.1002/cmdc.201200022 | |
dc.relation.references | [19] Kiguchi, T.; Shirakawa, M.; Honda, R.;Ninomiya, I.; Naito, T. Total Synthesis of (+)-Azimic Acid, (+)-Julifloridine, and Proposed Structure of N-Methyljulifloridine via Cycloaddition of Nitrone to a Chiral Dipolarophile. Tetrahedron1998, 54, 15589-15606. https://doi.org/10.1016/S0040-4020(98)01012-6 | |
dc.relation.references | [20] Cardona, F.; Moreno, G.; Guarna, F.;Vogel, P.; Schuetz, C.; Merino, P.; Goti, A. New Concise Total Synthesis of (+)-Lentiginosine and Some Structural Analogues. J. Org. Chem.2005, 70, 6552-6555. https://doi.org/10.1021/jo0509408 | |
dc.relation.references | [21] Delso, I.; Tejero, T.; Goti, A.; Merino, P. Synthesis of d-Arabinose-Derived Polyhydroxylated Pyrrolidine, Indolizidine and Pyrrolizidine Alkaloids. Total Synthesis of Hyacinthacine A2. Tetrahedron2010, 66, 1220-1227. https://doi.org/10.1016/j.tet.2009.12.030 | |
dc.relation.references | [22] Peng, J.; Jiang, D.; Lin, W.; Chen, Y. Palladium-Catalyzed Sequential One-Pot Reaction of Aryl Bromides with O-Homoallylhydroxylamines: Synthesis of N-Aryl-β-amino Alcohols. Org. Biomol. Chem. 2007, 5, 1391-1396. https://doi.org/10.1039/B701509G | |
dc.relation.references | [23] Andrade, M.; Barros, M.T.; Pinto, R.C. Clean and Sustainable Methodologies for the Synthesis of Isoxazolidines. In Heterocyclic-Targets in Advanced Organic Synthesis; Carreiras, M. C.; Marco-Contelles, J., Eds.; Research Signpost: Trivandrum, India, 2011; pp 51-67. | |
dc.relation.references | [24] Bădoiu, A.; Kündig, E.P.Electronic Effects in 1,3-Dipolar Cycloaddition Reactions of N-Alkyl and N-Benzyl Nitrones with Dipolarophiles. Org. Biomol. Chem. 2012,10, 114-121. https://doi.org/10.1039/C1OB06144E | |
dc.relation.references | [25] Frisch, M.J., Trucks, G.W., Schlegel, H.B. Gaussian 09, Revision D.01, CT 2009. | |
dc.relation.references | [26] Jasiński, R.; Koifman, O.I.; Barański, A. A DFT Study on the Regioselectivity and Molecular Mechanism of Nitroethene [2 + 3] Cycloaddition to (Z)-C,N-Diphenylnitrone and C,C,N-Triphenylnitrone. Mendeleev Commun.2011, 21, 262-263. https://doi.org/10.1016/j.mencom.2011.09.010 | |
dc.relation.references | [27] Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. A DFT Study of the Ionic [2+2] Cycloaddition Reactions of Keteniminium Cations with Terminal Acetylenes. Tetrahedron2015, 71, 2421-2427. https://doi.org/10.1016/j.tet.2015.02.070 | |
dc.relation.references | [28] Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297-306. https://doi.org/10.1021/ct700248k | |
dc.relation.references | [29] Cances, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Back-ground and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032. https://doi.org/10.1063/1.474659 | |
dc.relation.references | [30] Cossi, M.; Barone, V.; Cammi, R.;Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327-335. https://doi.org/10.1016/0009-2614(96)00349-1 | |
dc.relation.references | [31] Barone, V.; Cossi, M.; Tomasi, J. Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model. J. Comput. Chem. 1998, 19, 404-417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W | |
dc.relation.references | [32] Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415-32428. https://doi.org/10.1039/C4RA04280H | |
dc.relation.references | [33] Mayer, I. Bond Orders and Valences from ab Initio Wave Functions. Int. J. Quantum. Chem. 1986, 29, 477-483. https://doi.org/10.1002/qua.560290320 | |
dc.relation.references | [34] Keresztury, G.; Holly, S.; Besenyei, G.; Varga, J.; Wang, A.; Durig, J.R. Vibrational Spectra of Monothiocarbamates-II. IR and Raman Spectra, Vibrational Assignment, Conformational Analysis and AB Initio Calculations of S-Methyl-N,N-dimethylthiocarbamate. Spectrochimica Acta Part A: Molecular Spectroscopy. 1993, 49, 2007-2017, 2019-2026. https://doi.org/10.1016/S0584-8539(09)91012-1 | |
dc.relation.references | [35] Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interac-tions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899-926. https://doi.org/10.1021/cr00088a005 | |
dc.relation.references | [36] Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486 | |
dc.relation.references | [37] Zhao, Y.; Truhlar, D.G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. J. Phys. Chem. 2004, 108, 6908-6918. https://doi.org/10.1021/jp048147q | |
dc.relation.references | [38] Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161-4163. https://doi.org/10.1021/j100717a029 | |
dc.relation.references | [39] Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x | |
dc.relation.references | [40] Parr, R.G.; Yang, W. In Density Functional Theory of Atoms and Molecules; Oxford University: New York, 1989. | |
dc.relation.references | [41] Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reac-tions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615-4624. https://doi.org/10.1021/jo800572a | |
dc.relation.references | [42] Yang, W.; Mortier, W.J. The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. J. Am. Chem. Soc. 1986, 108, 5708-5711. https://doi.org/10.1021/ja00279a008 | |
dc.relation.references | [43] Domingo, L.R.; Aurell, M.J.; Pérez, P.;Contreras, R. Quantita-tive Characterization of the Local Electrophilicity of Organic Mole-cules. Understanding the Regioselectivity on Diels−Alder Reac-tions. J. Phys. Chem. 2002, 106, 6871-6875. https://doi.org/10.1021/jp020715j | |
dc.relation.references | [44] Pérez, P.; Domingo, L.R.; Duque-Norna, M.;Chamorro, E. A Condensed-to-Atom Nucleophilicity Index. An Application to the Director Effects on the Electrophilic Aromatic Substitutions.J. Mol. Struct. Theochem. 2009, 895, 86-91. https://doi.org/10.1016/j.theochem.2008.10.014 | |
dc.relation.references | [45]Mloston, G.; Jasinski, R.; Kula, K.;Heimgartner, H. A DFT Study on the Barton–Kellogg Reaction – The Molecular Mechanism of the Formation of Thiiranes in the Reaction between Diphenyldia-zomethane and Diaryl Thioketones. Eur. J. Org. Chem. 2020, 2020, 176-182. https://doi.org/10.1002/ejoc.201901443 | |
dc.relation.references | [46] Sustmann, R.; Shubert, R. Photoelektronenspektroskopische bestimmung von substituenten-effekten II. α,β-ungesättigte Carbonester. Tetrahedron Lett.1972, 13, 4271-4274. https://doi.org/10.1016/S0040-4039(01)94292-3 | |
dc.relation.references | [47] Šponer, J. Hobza, P. DNA Base Amino Groups and their Role in Molecular Interactions: Ab Initio and Preliminary Density Functional Theory Calculations. Int. J. Quantum. Chem. 1996, 57, 959-970.https://doi.org/10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S | |
dc.relation.references | [48] Murray, J.S.; Sen, K. Molecular electrostatic potentials: concepts and 399 applications; Elsevier: Amsterdam, 1996. | |
dc.relation.references | [49] Marakchi, K.; Kabbaj, O. K.; Komiha, N. Etude DFT du méca-nisme des réactions de cycloaddition dipolaire-1,3 de la C,N-diphénylnitrone avec des dipolarophiles fluorés de type éthylénique et acétylénique. J. Fluor. Chem. 2002, 114, 81-89. https://doi.org/10.1016/S0022-1139(01)00570-X | |
dc.relation.references | [50] Marakchi, K.; Abou El Makarim, H.; Kabbaj, O. K.;Komiha, N. Etude Theorique du Mecanisme de la Reaction de Cycloaddition Dipolaire-1,3 du 3-Fluoro-3-Trifluoromethyl Prop-2-Enoate de Methyle Avec la Pyrroline-1-Oxyde. Phys. Chem. News. 2010,52, 128-136. | |
dc.relation.references | [51] Marakchi, K.; Ghailane, R.; Kabbaj, O.K.; Komiha, N. DFT Study of the Mechanism and Stereoselectivity of the 1,3-Dipolar Cycloaddition between Pyrroline-1-oxide and Methyl Crotonate. J. Chem. Sci. 2014, 126, 283-292. https://doi.org/10.1007/s12039-013-0563-y | |
dc.relation.references | [52] Domingo, L.R. Theoretical Study of the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides. A DFT Study of Reaction between Trifluoromethyl Thiomethyl Azomethine Ylide and Acronitrile. J. Org. Chem. 1999, 64, 3922-3929. https://doi.org/10.1021/jo9822683 | |
dc.relation.referencesen | [1] Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley-Interscience: New York, 1984. | |
dc.relation.referencesen | [2] Gothelf, K.V., Jorgensen, K.A.Asymmetric 1,3-Dipolar Cyc-loaddition Reactions. Chem. Rev. 1998, 98, 863-910. http://doi.org/10.1021/cr970324e | |
dc.relation.referencesen | [3] Jasiński, R.A New Insight on the Molecular Mechanism of the Reaction between (Z)-C,N-Diphenylnitrone and 1,2-Bismethylene-3,3,4,4,5,5-hexamethylcyclopentane.J. Mol. Graph. Model. 2020, 94, 107461. http://doi.org/10.1016/j.jmgm.2019.107461 | |
dc.relation.referencesen | [4] Jasiński, R.Competition between One-Step and Two-Step Me-chanism in Polar [3 + 2] Cycloadditions of (Z)-C-(3,4,5-Trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-Bromo-1-nitroethenes.Comput. Theor. Chem. 2018, 1125, 77-85. https://doi.org/10.1016/j.comptc.2018.01.009 | |
dc.relation.referencesen | [5] Jasiński, R.Nitroacetylene as Dipolarophile in [2 + 3] Cycloaddition Reactions with Allenyl-Type Three-Atom Components: DFT Computational Study. Monatsh. Chem. 2015, 146, 591-599. https://doi.org/10.1007/s00706-014-1389-0 | |
dc.relation.referencesen | [6] Jasiński, R.; Jasińska, E.; Dresler, E. A DFT Computational Study of the Molecular Mechanism of [3 + 2] Cycloaddition Reac-tions between Nitroethene and Benzonitrile N-Oxides. J. Mol. Model. 2017, 23, 13. https://doi.org/10.1007/s00894-016-3185-8 | |
dc.relation.referencesen | [7] Jasiński, R.Competition between the One-Step and Two-Step, Zwitterionic Mechanisms in the [2+3] Cycloaddition of Gem-Dinitroethene with (Z)-C,N-Diphenylnitrone: A DFT Computation-al Study.Tetrahedron2013, 69, 927-932. https://doi.org/10.1016/j.tet.2012.10.095 | |
dc.relation.referencesen | [8] Padwa, A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards Heterocycles and Natural Products; Wiley and Sons: Hoboken, 2003. | |
dc.relation.referencesen | [9] Merino, P. In Science of Synthesis, Vol. 27; Padwa, A., Ed.; George Thieme: New York, 2004. | |
dc.relation.referencesen | [10] Jones, G.O.; Houk, K.N.Predictions of Substituent Effects in Thermal Azide 1,3-Dipolar Cycloadditions: Implications for Dy-namic Combinatorial (Reversible) and Click (Irreversible) Chemi-stry. J. Org. Chem. 2008, 73, 1333-1342. https://doi.org/10.1021/jo702295d | |
dc.relation.referencesen | [11] Parr, R.G.; Pearson R.G.Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005 | |
dc.relation.referencesen | [12] Minter, A.R.;, Brennan, B.B.; Mapp, A.K. A Small Molecule Transcriptional Activation Domain. J. Am. Chem. Soc. 2004, 126, 10504-10505. https://doi.org/10.1021/ja0473889 | |
dc.relation.referencesen | [13] Chiacchio, U.; Rescifina, A.; Iannazzo, D.;Piperno, A.; Romeo, R.; Borrello, L.; Sciortino, M.T.; Balestrieri, E.; Macchi, B.; Mastino, A. et al.Phosphonated Carbocyclic 2‘-Oxa-3‘-azanucleosides as New Antiretroviral Agents. J. Med. Chem. 2007, 50, 3747-3750. https://doi.org/10.1021/jm070285r | |
dc.relation.referencesen | [14] Ding, P.; Miller, M.; Chen, Y.;Helquist, P.; Oliver, A.J.; Wiest, O.Syntheses of Conformationally Constricted Molecules as Potential NAALADase/PSMA Inhibitors. Org. Lett. 2004, 6, 1805-1808. https://doi.org/10.1021/ol049473r | |
dc.relation.referencesen | [15] Wess, G., Kramer, W., Schuber, G.;Enhsen, A.; Baringhaus, K.-H.; Glombik, H.; Müllner, S.; Bock, K.; Kleine, H.; John, M. et al. Synthesis of Bile Acid – Drug Conjugates: Potential Drug – Shuttles for Liver Specific Targeting. Tetrahedron. Lett. 1993, 34, 819-822. https://doi.org/10.1016/0040-4039(93)89021-H | |
dc.relation.referencesen | [16] Merino, P.; Tejero, T.; Unzurrunzaga, F.J.; Franco, S.; Chiac-chio, U.; Saita, M.G.; Iannazzo, D.; Piperno, A.; Romeo, G. An Efficient Approach to Enantiomeric Isoxazolidinyl Analogues of Tiazofurin Based on Nitrone Cycloadditions.Tetrahedron Asymme-try2005, 16, 3865-3876. https://doi.org/10.1016/j.tetasy.2005.11.004 | |
dc.relation.referencesen | [17] Mannucci, V.; Cordero, F.M.; Piperno, A.;Romeo, G.; Brandi, A. Diastereoselective Synthesis of a Collection of New Homonuc-leoside Mimetics Containing Pyrrolo[1,2-b]isoxazoline and Pyrroli-dine Rings. Tetrahedron Asymmetry2008, 19, 1204-1209. https://doi.org/10.1016/j.tetasy.2008.04.028 | |
dc.relation.referencesen | [18] Romeo, R.; Giofre, S.V.; Macchi, B.;Balestrieri, E.; Mastino, A.; Merino, P.; Carnovale, C.; Romeo, G.; Chiacchio, U. Truncated Reverse Isoxazolidinyl Nucleosides: A New Class of Allosteric HIV-1 Reverse Transcriptase Inhibitors. ChemMedChem. 2012, 7, 565-569. https://doi.org/10.1002/cmdc.201200022 | |
dc.relation.referencesen | [19] Kiguchi, T.; Shirakawa, M.; Honda, R.;Ninomiya, I.; Naito, T. Total Synthesis of (+)-Azimic Acid, (+)-Julifloridine, and Proposed Structure of N-Methyljulifloridine via Cycloaddition of Nitrone to a Chiral Dipolarophile. Tetrahedron1998, 54, 15589-15606. https://doi.org/10.1016/S0040-4020(98)01012-6 | |
dc.relation.referencesen | [20] Cardona, F.; Moreno, G.; Guarna, F.;Vogel, P.; Schuetz, C.; Merino, P.; Goti, A. New Concise Total Synthesis of (+)-Lentiginosine and Some Structural Analogues. J. Org. Chem.2005, 70, 6552-6555. https://doi.org/10.1021/jo0509408 | |
dc.relation.referencesen | [21] Delso, I.; Tejero, T.; Goti, A.; Merino, P. Synthesis of d-Arabinose-Derived Polyhydroxylated Pyrrolidine, Indolizidine and Pyrrolizidine Alkaloids. Total Synthesis of Hyacinthacine A2. Tetrahedron2010, 66, 1220-1227. https://doi.org/10.1016/j.tet.2009.12.030 | |
dc.relation.referencesen | [22] Peng, J.; Jiang, D.; Lin, W.; Chen, Y. Palladium-Catalyzed Sequential One-Pot Reaction of Aryl Bromides with O-Homoallylhydroxylamines: Synthesis of N-Aryl-b-amino Alcohols. Org. Biomol. Chem. 2007, 5, 1391-1396. https://doi.org/10.1039/B701509G | |
dc.relation.referencesen | [23] Andrade, M.; Barros, M.T.; Pinto, R.C. Clean and Sustainable Methodologies for the Synthesis of Isoxazolidines. In Heterocyclic-Targets in Advanced Organic Synthesis; Carreiras, M. C.; Marco-Contelles, J., Eds.; Research Signpost: Trivandrum, India, 2011; pp 51-67. | |
dc.relation.referencesen | [24] Bădoiu, A.; Kündig, E.P.Electronic Effects in 1,3-Dipolar Cycloaddition Reactions of N-Alkyl and N-Benzyl Nitrones with Dipolarophiles. Org. Biomol. Chem. 2012,10, 114-121. https://doi.org/10.1039/P.1OB06144E | |
dc.relation.referencesen | [25] Frisch, M.J., Trucks, G.W., Schlegel, H.B. Gaussian 09, Revision D.01, CT 2009. | |
dc.relation.referencesen | [26] Jasiński, R.; Koifman, O.I.; Barański, A. A DFT Study on the Regioselectivity and Molecular Mechanism of Nitroethene [2 + 3] Cycloaddition to (Z)-C,N-Diphenylnitrone and C,C,N-Triphenylnitrone. Mendeleev Commun.2011, 21, 262-263. https://doi.org/10.1016/j.mencom.2011.09.010 | |
dc.relation.referencesen | [27] Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. A DFT Study of the Ionic [2+2] Cycloaddition Reactions of Keteniminium Cations with Terminal Acetylenes. Tetrahedron2015, 71, 2421-2427. https://doi.org/10.1016/j.tet.2015.02.070 | |
dc.relation.referencesen | [28] Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297-306. https://doi.org/10.1021/ct700248k | |
dc.relation.referencesen | [29] Cances, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Back-ground and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032. https://doi.org/10.1063/1.474659 | |
dc.relation.referencesen | [30] Cossi, M.; Barone, V.; Cammi, R.;Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327-335. https://doi.org/10.1016/0009-2614(96)00349-1 | |
dc.relation.referencesen | [31] Barone, V.; Cossi, M.; Tomasi, J. Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model. J. Comput. Chem. 1998, 19, 404-417. https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W | |
dc.relation.referencesen | [32] Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415-32428. https://doi.org/10.1039/P.4RA04280H | |
dc.relation.referencesen | [33] Mayer, I. Bond Orders and Valences from ab Initio Wave Functions. Int. J. Quantum. Chem. 1986, 29, 477-483. https://doi.org/10.1002/qua.560290320 | |
dc.relation.referencesen | [34] Keresztury, G.; Holly, S.; Besenyei, G.; Varga, J.; Wang, A.; Durig, J.R. Vibrational Spectra of Monothiocarbamates-II. IR and Raman Spectra, Vibrational Assignment, Conformational Analysis and AB Initio Calculations of S-Methyl-N,N-dimethylthiocarbamate. Spectrochimica Acta Part A: Molecular Spectroscopy. 1993, 49, 2007-2017, 2019-2026. https://doi.org/10.1016/S0584-8539(09)91012-1 | |
dc.relation.referencesen | [35] Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interac-tions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899-926. https://doi.org/10.1021/cr00088a005 | |
dc.relation.referencesen | [36] Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486 | |
dc.relation.referencesen | [37] Zhao, Y.; Truhlar, D.G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. J. Phys. Chem. 2004, 108, 6908-6918. https://doi.org/10.1021/jp048147q | |
dc.relation.referencesen | [38] Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161-4163. https://doi.org/10.1021/j100717a029 | |
dc.relation.referencesen | [39] Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x | |
dc.relation.referencesen | [40] Parr, R.G.; Yang, W. In Density Functional Theory of Atoms and Molecules; Oxford University: New York, 1989. | |
dc.relation.referencesen | [41] Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reac-tions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615-4624. https://doi.org/10.1021/jo800572a | |
dc.relation.referencesen | [42] Yang, W.; Mortier, W.J. The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. J. Am. Chem. Soc. 1986, 108, 5708-5711. https://doi.org/10.1021/ja00279a008 | |
dc.relation.referencesen | [43] Domingo, L.R.; Aurell, M.J.; Pérez, P.;Contreras, R. Quantita-tive Characterization of the Local Electrophilicity of Organic Mole-cules. Understanding the Regioselectivity on Diels−Alder Reac-tions. J. Phys. Chem. 2002, 106, 6871-6875. https://doi.org/10.1021/jp020715j | |
dc.relation.referencesen | [44] Pérez, P.; Domingo, L.R.; Duque-Norna, M.;Chamorro, E. A Condensed-to-Atom Nucleophilicity Index. An Application to the Director Effects on the Electrophilic Aromatic Substitutions.J. Mol. Struct. Theochem. 2009, 895, 86-91. https://doi.org/10.1016/j.theochem.2008.10.014 | |
dc.relation.referencesen | [45]Mloston, G.; Jasinski, R.; Kula, K.;Heimgartner, H. A DFT Study on the Barton–Kellogg Reaction – The Molecular Mechanism of the Formation of Thiiranes in the Reaction between Diphenyldia-zomethane and Diaryl Thioketones. Eur. J. Org. Chem. 2020, 2020, 176-182. https://doi.org/10.1002/ejoc.201901443 | |
dc.relation.referencesen | [46] Sustmann, R.; Shubert, R. Photoelektronenspektroskopische bestimmung von substituenten-effekten II. α,b-ungesättigte Carbonester. Tetrahedron Lett.1972, 13, 4271-4274. https://doi.org/10.1016/S0040-4039(01)94292-3 | |
dc.relation.referencesen | [47] Šponer, J. Hobza, P. DNA Base Amino Groups and their Role in Molecular Interactions: Ab Initio and Preliminary Density Functional Theory Calculations. Int. J. Quantum. Chem. 1996, 57, 959-970.https://doi.org/10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S | |
dc.relation.referencesen | [48] Murray, J.S.; Sen, K. Molecular electrostatic potentials: concepts and 399 applications; Elsevier: Amsterdam, 1996. | |
dc.relation.referencesen | [49] Marakchi, K.; Kabbaj, O. K.; Komiha, N. Etude DFT du méca-nisme des réactions de cycloaddition dipolaire-1,3 de la C,N-diphénylnitrone avec des dipolarophiles fluorés de type éthylénique et acétylénique. J. Fluor. Chem. 2002, 114, 81-89. https://doi.org/10.1016/S0022-1139(01)00570-X | |
dc.relation.referencesen | [50] Marakchi, K.; Abou El Makarim, H.; Kabbaj, O. K.;Komiha, N. Etude Theorique du Mecanisme de la Reaction de Cycloaddition Dipolaire-1,3 du 3-Fluoro-3-Trifluoromethyl Prop-2-Enoate de Methyle Avec la Pyrroline-1-Oxyde. Phys. Chem. News. 2010,52, 128-136. | |
dc.relation.referencesen | [51] Marakchi, K.; Ghailane, R.; Kabbaj, O.K.; Komiha, N. DFT Study of the Mechanism and Stereoselectivity of the 1,3-Dipolar Cycloaddition between Pyrroline-1-oxide and Methyl Crotonate. J. Chem. Sci. 2014, 126, 283-292. https://doi.org/10.1007/s12039-013-0563-y | |
dc.relation.referencesen | [52] Domingo, L.R. Theoretical Study of the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides. A DFT Study of Reaction between Trifluoromethyl Thiomethyl Azomethine Ylide and Acronitrile. J. Org. Chem. 1999, 64, 3922-3929. https://doi.org/10.1021/jo9822683 | |
dc.relation.uri | http://doi.org/10.1021/cr970324e | |
dc.relation.uri | http://doi.org/10.1016/j.jmgm.2019.107461 | |
dc.relation.uri | https://doi.org/10.1016/j.comptc.2018.01.009 | |
dc.relation.uri | https://doi.org/10.1007/s00706-014-1389-0 | |
dc.relation.uri | https://doi.org/10.1007/s00894-016-3185-8 | |
dc.relation.uri | https://doi.org/10.1016/j.tet.2012.10.095 | |
dc.relation.uri | https://doi.org/10.1021/jo702295d | |
dc.relation.uri | https://doi.org/10.1021/ja00364a005 | |
dc.relation.uri | https://doi.org/10.1021/ja0473889 | |
dc.relation.uri | https://doi.org/10.1021/jm070285r | |
dc.relation.uri | https://doi.org/10.1021/ol049473r | |
dc.relation.uri | https://doi.org/10.1016/0040-4039(93)89021-H | |
dc.relation.uri | https://doi.org/10.1016/j.tetasy.2005.11.004 | |
dc.relation.uri | https://doi.org/10.1016/j.tetasy.2008.04.028 | |
dc.relation.uri | https://doi.org/10.1002/cmdc.201200022 | |
dc.relation.uri | https://doi.org/10.1016/S0040-4020(98)01012-6 | |
dc.relation.uri | https://doi.org/10.1021/jo0509408 | |
dc.relation.uri | https://doi.org/10.1016/j.tet.2009.12.030 | |
dc.relation.uri | https://doi.org/10.1039/B701509G | |
dc.relation.uri | https://doi.org/10.1039/C1OB06144E | |
dc.relation.uri | https://doi.org/10.1016/j.mencom.2011.09.010 | |
dc.relation.uri | https://doi.org/10.1016/j.tet.2015.02.070 | |
dc.relation.uri | https://doi.org/10.1021/ct700248k | |
dc.relation.uri | https://doi.org/10.1063/1.474659 | |
dc.relation.uri | https://doi.org/10.1016/0009-2614(96)00349-1 | |
dc.relation.uri | https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W | |
dc.relation.uri | https://doi.org/10.1039/C4RA04280H | |
dc.relation.uri | https://doi.org/10.1002/qua.560290320 | |
dc.relation.uri | https://doi.org/10.1016/S0584-8539(09)91012-1 | |
dc.relation.uri | https://doi.org/10.1021/cr00088a005 | |
dc.relation.uri | https://doi.org/10.1063/1.449486 | |
dc.relation.uri | https://doi.org/10.1021/jp048147q | |
dc.relation.uri | https://doi.org/10.1021/j100717a029 | |
dc.relation.uri | https://doi.org/10.1021/ja983494x | |
dc.relation.uri | https://doi.org/10.1021/jo800572a | |
dc.relation.uri | https://doi.org/10.1021/ja00279a008 | |
dc.relation.uri | https://doi.org/10.1021/jp020715j | |
dc.relation.uri | https://doi.org/10.1016/j.theochem.2008.10.014 | |
dc.relation.uri | https://doi.org/10.1002/ejoc.201901443 | |
dc.relation.uri | https://doi.org/10.1016/S0040-4039(01)94292-3 | |
dc.relation.uri | https://doi.org/10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S | |
dc.relation.uri | https://doi.org/10.1016/S0022-1139(01)00570-X | |
dc.relation.uri | https://doi.org/10.1007/s12039-013-0563-y | |
dc.relation.uri | https://doi.org/10.1021/jo9822683 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kouchkar K., Boumedjane Y., Hachani S. E., 2023 | |
dc.subject | [3+2] циклоприєднання | |
dc.subject | N-третбутил | |
dc.subject | α-(4-трифлуорометил)-феніл | |
dc.subject | метакролеїн | |
dc.subject | DFT | |
dc.subject | регіоселективність | |
dc.subject | стереоселективність | |
dc.subject | [3+2] cycloaddition | |
dc.subject | N-tert-butyl | |
dc.subject | α-(4-trifluoromethyl)-phenyl | |
dc.subject | methacrolein | |
dc.subject | DFT | |
dc.subject | regioselectivity | |
dc.subject | stereoselectivity | |
dc.title | [3+2] Cycloaddition of N-tert-Butyl,a-(4-Trifluoromethyl)-Phenylnitrone with Methacrolein: Theoretical Investigation | |
dc.title.alternative | [3+2] Циклоприєднання N-трет-бутил,α-(4-трифлуорометил)-фенілнітрону з метакролеїном: теоретичне дослідження | |
dc.type | Article |
Files
License bundle
1 - 1 of 1