Vibration of orthotropic doubly curved panel with a set of inclusions of arbitrary configuration with different types of connections with the panel

dc.citation.epage234
dc.citation.issue2
dc.citation.spage221
dc.contributor.affiliationІнститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
dc.contributor.affiliationPidstryhach Institute for Applied Problems of Mechanics and Mathematics of the National Academy of Sciences of Ukraine
dc.contributor.authorШопа, Т.
dc.contributor.authorShopa, T.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-27T08:51:44Z
dc.date.available2020-02-27T08:51:44Z
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.description.abstractУ межах уточненої теорії оболонок, яка враховує поперечні зсуви та всі інерційні компоненти, побудовано розв’язок задачі про усталені коливання ортотропної панелі подвійної кривини з довлільною кількістю абсолютно жорстких включень довільної форми та розташування. Включення мають різні типи з’єднань з панеллю і здійснюють поступальний рух вздовж нормального напрямку до серединної поверхні панелі. Зовнішня границя панелі довільної геометричної конфігурації. Розглянуто довільні мішані гармонічні в часі граничні умови на зовнішній границі панелі. Розв’язок побудовано на основі непрямого методу граничних елементів. Використано послідовнісний підхід до подання функцій Гріна. Інтегральні рівняння розв’язано методом колокацій.
dc.description.abstractIn the framework of the refined theory of shells, which takes into account transverse shear deformation and all inertial components, the solution of the problem on the steady-state vibration of the orthotropic doubly curved panel with the arbitrary number of absolutely rigid inclusions of the arbitrary geometrical form and location is constructed. The inclusions have different types of connections with the panel and perform the trans lational motion in the normal direction to the middle surface of the panel. The external boundary of the panel is of the arbitrary geometrical configuration. The arbitrary mixed, harmonic in time, boundary conditions are considered on the external boundary of the panel. The solution is built on the basis of the indirect boundary elements method. The sequential approach to the representation of the Green’s functions is used. The integral equations are solved by the collocation method.
dc.format.extent221-234
dc.format.pages14
dc.identifier.citationShopa T. Vibration of orthotropic doubly curved panel with a set of inclusions of arbitrary configuration with different types of connections with the panel / T. Shopa // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 221–234.
dc.identifier.citationenShopa T. Vibration of orthotropic doubly curved panel with a set of inclusions of arbitrary configuration with different types of connections with the panel / T. Shopa // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 221–234.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46130
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (5), 2018
dc.relation.references1. Mykhas’kiv V., Kunets Ya., Matus V., Khay O. Elastic wave dispersion and attenuation caused by multiple types of disc-shaped inclusions. International Journal of Structural Integrity. 9 (2), 219–232 (2018).
dc.relation.references2. Kit H. S., Mykhas’skiv V. V., Khaj O. M. Analysis of the steady oscillations of a plane absolutely rigid inclusion in a three-dimensional elastic body by the boundary element method. Journal of applied mathematics and mechanics. 66 (5), 817–824 (2002).
dc.relation.references3. Mykhas’kiv V. V., Khay O. M., Zhang C., Bostr¨om A. Effective dynamic properties of 3D composite materials containing rigid penny-shaped inclusions. Waves in Random and Complex Media. 20 (3), 491–510 (2010).
dc.relation.references4. Mykhas’kiv V. Transient response of a plane rigid inclusion to an incident wave in an elastic solid. Wave motion. 41 (2), 133–144 (2005).
dc.relation.references5. Kit G. S., Kunets Ya. I., Mykhas’kiv V. V. Interaction of a stationary wave with a thin low stiffness pennyshaped inclusion in an elastic body. Mechanics of solids. 39 (5), 64–70 (2004).
dc.relation.references6. Burak Ja. J., Rudavsky Ju. K., Sukhorolsky M. A. Analitychna mechanika lokalno navantazhenyh obolonok. Lviv, Intelekt-Zakhid (2007), (in Ukrainian).
dc.relation.references7. Shopa T. Do pobudovy rozvazku zadachi pro kolyvanna ortotropnoi nepolohoji zylindrychnoi paneli z vkluchennam dovilnoi konfigurazii. Mashynoznavstvo. 7, 38–42 (2010), (in Ukrainian).
dc.relation.references8. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju vkluchen dovilnoi konfihurazii. Suchasni problemy mechaniky ta matematyky. 2, 187–188 (2013), (in Ukrainian).
dc.relation.references9. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju vkluchen dovilnoi konfihurazii z pruzhnymy prosharkamy. Visnyk Ternopilskoho nazionalnonho tekhnichnoho universytety. 1, 71–84 (2013), (in Ukrainian).
dc.relation.references10. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju sharnirno opertyh vkluchen dovilnoi konfihurazii. Prykarpatskij visnyk naukovoho tovarystva Shevchenka. 2, 114–121 (2017), (in Ukrainian).
dc.relation.references11. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju otvoriv dovilnoji konfihurazii. Visnyk Ternopilskoho nazionalnonho tekhnichnoho universytety. 3, 63–74 (2012), (in Ukrainian).
dc.relation.references12. Lighthill J. Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press (1958).
dc.relation.references13. Sukhorolsky M. A. Funkzionalni poslidovnosti i rady. Lviv, Rastr-7 (2010), (in Ukrainian)
dc.relation.referencesen1. Mykhas’kiv V., Kunets Ya., Matus V., Khay O. Elastic wave dispersion and attenuation caused by multiple types of disc-shaped inclusions. International Journal of Structural Integrity. 9 (2), 219–232 (2018).
dc.relation.referencesen2. Kit H. S., Mykhas’skiv V. V., Khaj O. M. Analysis of the steady oscillations of a plane absolutely rigid inclusion in a three-dimensional elastic body by the boundary element method. Journal of applied mathematics and mechanics. 66 (5), 817–824 (2002).
dc.relation.referencesen3. Mykhas’kiv V. V., Khay O. M., Zhang C., Bostr¨om A. Effective dynamic properties of 3D composite materials containing rigid penny-shaped inclusions. Waves in Random and Complex Media. 20 (3), 491–510 (2010).
dc.relation.referencesen4. Mykhas’kiv V. Transient response of a plane rigid inclusion to an incident wave in an elastic solid. Wave motion. 41 (2), 133–144 (2005).
dc.relation.referencesen5. Kit G. S., Kunets Ya. I., Mykhas’kiv V. V. Interaction of a stationary wave with a thin low stiffness pennyshaped inclusion in an elastic body. Mechanics of solids. 39 (5), 64–70 (2004).
dc.relation.referencesen6. Burak Ja. J., Rudavsky Ju. K., Sukhorolsky M. A. Analitychna mechanika lokalno navantazhenyh obolonok. Lviv, Intelekt-Zakhid (2007), (in Ukrainian).
dc.relation.referencesen7. Shopa T. Do pobudovy rozvazku zadachi pro kolyvanna ortotropnoi nepolohoji zylindrychnoi paneli z vkluchennam dovilnoi konfigurazii. Mashynoznavstvo. 7, 38–42 (2010), (in Ukrainian).
dc.relation.referencesen8. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju vkluchen dovilnoi konfihurazii. Suchasni problemy mechaniky ta matematyky. 2, 187–188 (2013), (in Ukrainian).
dc.relation.referencesen9. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju vkluchen dovilnoi konfihurazii z pruzhnymy prosharkamy. Visnyk Ternopilskoho nazionalnonho tekhnichnoho universytety. 1, 71–84 (2013), (in Ukrainian).
dc.relation.referencesen10. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju sharnirno opertyh vkluchen dovilnoi konfihurazii. Prykarpatskij visnyk naukovoho tovarystva Shevchenka. 2, 114–121 (2017), (in Ukrainian).
dc.relation.referencesen11. Shopa T. Kolyvanna ortotropnoi paneli podvijnoi kryvyny z mnozhynoju otvoriv dovilnoji konfihurazii. Visnyk Ternopilskoho nazionalnonho tekhnichnoho universytety. 3, 63–74 (2012), (in Ukrainian).
dc.relation.referencesen12. Lighthill J. Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press (1958).
dc.relation.referencesen13. Sukhorolsky M. A. Funkzionalni poslidovnosti i rady. Lviv, Rastr-7 (2010), (in Ukrainian)
dc.rights.holderCMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University
dc.subjectортотропна панель подвійної кривини
dc.subjectвключення
dc.subjectколивання
dc.subjectнепрямий метод граничних елементів
dc.subjectorthotropic doubly curved panel
dc.subjectinclusions
dc.subjectvibration
dc.subjectindirect boundary elements method
dc.subject.udc539.3
dc.titleVibration of orthotropic doubly curved panel with a set of inclusions of arbitrary configuration with different types of connections with the panel
dc.title.alternativeКоливання ортотропної панелі подвійної кривини з множиною включень довільної конфігурації та різними типами з’єднань з панеллю
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2018v5n2_Shopa_T-Vibration_of_orthotropic_221-234.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2018v5n2_Shopa_T-Vibration_of_orthotropic_221-234__COVER.png
Size:
371.96 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.95 KB
Format:
Plain Text
Description: