Synthesis, Antimicrobial and Computational Studies of New Branched Azaphenothiazinones Derivatives

dc.citation.epage795
dc.citation.issue4
dc.citation.spage786
dc.contributor.affiliationUniversity of Nigeria
dc.contributor.affiliationGregory University
dc.contributor.affiliationNorth Carolina State University
dc.contributor.authorIbeanu, Fidelia N.
dc.contributor.authorEzeokonkwo, Mercy A.
dc.contributor.authorOnoabedje, Efeturi A.
dc.contributor.authorEze, Cosmas C.
dc.contributor.authorGodwin-Nwakwasi, Evelyn U.
dc.contributor.authorOkoro, Uchechukwu C.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:19Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ процесі постійного пошуку нових медикаментозно активних нелінійних фенотіазинів синтезовано нові кутові похідні хлороазафенотіазинону за допомогою реакцій перехресного приєднання, каталізованих перехідними металами. Структурну будову синтезованих сполук встановлено за допомогою комбінованого спектроскопічного й елементного аналізу. Синтезовані сполуки були протестовані на антимікробну активність щодо ізолятів Bacillus subtilis, Staphylococcus aureus, Enterococus faecalis, Escherichia coli, Candida albican та Aspergillus niger методом конвекційного розведення в агаровому середовищі, і сполуки 5c та 8c виявили відмінну активність in vitro проти деяких з досліджуваних мікроорганізмів. Дослідження in silico показало, що синтезовані сполуки мають перспективні фізико-хімічні властивості та добре вписуються в активний центр біотин-протеїнової лігази (BPL), утворюючи необхідні водневі зв'язки та гідрофобні взаємодії.
dc.description.abstractIn a continued search for new medicinally active nonlinear phenothiazines, novel angular chloroazaphenothiazinone derivatives have been synthesized via transition metal-catalyzed cross-coupling reactions. The structural elucidation of the synthesized compounds was established by a combined spectroscopic and elemental analysis. The synthesized compounds were tested for their antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Enterococus faecalis, Escherichia coli, Candida albican, and Aspergillus niger isolates by the convectional agar-well dilution method and compounds 5c and 8cdisclosed excellent in vitro activity against some of the tested microorganisms. In silico,the study showed that the synthesized compounds possessed promising physichemical properties and fit well in the active site of a Biotin-Protein Ligase (BPL) forming essential hydrogen bonding and hydrophobic interactions.
dc.format.extent786-795
dc.format.pages10
dc.identifier.citationSynthesis, Antimicrobial and Computational Studies of New Branched Azaphenothiazinones Derivatives / Fidelia N. Ibeanu, Mercy A. Ezeokonkwo, Efeturi A. Onoabedje, Cosmas C. Eze, Evelyn U. Godwin-Nwakwasi, Uchechukwu C. Okoro // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 786–795.
dc.identifier.citationenSynthesis, Antimicrobial and Computational Studies of New Branched Azaphenothiazinones Derivatives / Fidelia N. Ibeanu, Mercy A. Ezeokonkwo, Efeturi A. Onoabedje, Cosmas C. Eze, Evelyn U. Godwin-Nwakwasi, Uchechukwu C. Okoro // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 786–795.
dc.identifier.doidoi.org/10.23939/chcht17.04.786
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63713
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Onoabedje, E.A.;Egu, S.A.; Ezeokonkwo M.A.; Okoro, U.C. Highlights of Molecular Structures and Applications of Phenothiazine & Phenoxazine Polycycles.J MolStruct.2019,1175, 956–962. https://doi.org/10.1016/j.molstruc.2018.08.064
dc.relation.references[2] Posso, M.C.; Domingues, F.C.; Ferreira, S.; Silvestre, S. Development of phenothiazine hybrids with Potential Medicinal Interest: A Review. Molecules2022, 27, 276. https://doi.org/10.3390/molecules27010276
dc.relation.references[3] Pluta, K.;Jeleń, M.;Morak-Młodawska, B.; Zimecki, M.; Artym, J.;Kocięba, M.;Zaczyńska, E. Azaphenothiazines – Promising Phenothiazine Derivatives. An Insight into Nomenclature, Synthesis, Structure Elucidation and Biological Properties. Eur J Med Chem. 2017, 138, 774–806. https://doi.org/10.1016/j.ejmech.2017.07.009
dc.relation.references[4] Montoya, M.C.; DiDone, L.; Heier, R.F.; Meyers, M.J.; Krysan, D.J. Antifungal Phenothiazines: Optimization, Characterization of Mechanism, and Modulation of Neuroreceptor Activity. ACS Infect. Dis.2018,4, 499–507. https://doi.org/10.1021/acsinfecdis.7b00157
dc.relation.references[5] Wen, B.; Zhou, M. Metabolic Activation of the Phenothiazine Antipsychotic Chlorpromazine and Thioridazineto ElectropholicIminoquinone Species in Human Liver Microsomesand Recombinant P450s. Chem. Biol. Interact.2009,181, 220–226. https://doi.org/10.1016/j.cbi.2009.05.014
dc.relation.references[6] Sadanandam, Y.S.; Shetty, M.M.; Rao, A.B.; Rambabu, Y. 10H-Pehnothiazines: A New Class of Enzyme Inhibitors for Inflammatory Diseases. Eur. J. Med. Chem.2009, 44, 197–202. https://doi.org/10.1016/j.ejmech.2008.02.028
dc.relation.references[7] Gopi, C.; Dhanaraju, M.D. Recent Progress in Synthesis, Structure and Biological Activities of Phenothiazine Derivatives. Rev. J. Chem.2019, 9,95–126. https://doi.org/10.1134/S2079978019020018
dc.relation.references[8] Trivedi, A.R.; Siddiqui, A.B.; Shah, V.H. Design, Synthesis, Characterization and Antitubercular Activity of some 2-Heterocycle Substituted Phenothiazines.Arkivoc2008,2, 210–217. https://doi.org/10.3998/ark.5550190.0009.223
dc.relation.references[9] Siddiqui, N.; Alam, S.M.; Ahsan, W. Synthesis, Anticonvulsant and Toxicity Evaluation of 2-(1H-indol-3-yl)acetyl-N-(substituted phenyl)hydrazine. Acta Pharm. 2008, 58, 445–54. https://doi.org/10.2478/v10007-008-0025-0
dc.relation.references[10] Kumar, A.; Gurtu, S.; Agarwal, J.C.; Sinha, J.N.; Bhargava K.P.; Shanker, K. Synthesis and Cardiovascular Activity of Substituted 4-Azetidinones. J. Indian Chem. Soc.1983, 60, 608–610. https://doi.org/10.5281/zenodo.6348916
dc.relation.references[11] Venkatesan, K.; Satyanarayana, V.S.V.; Sivakumar, A. Synthesis and Biological Evaluation of Novel Phenothiazine Derivatives as Potential Antitumor Agents. PolycyclAromatCompd2023, 43, 850–859. https://doi.org/10.1080/10406638.2021.2021254
dc.relation.references[12] Onoabedje, E.A.;Okafor, S.N.; Akpomie, K.G.; Okoro, U.C. The Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles. Chem. Chem. Technol.2019, 13, 288–295. https://doi.org/10.23939/chcht13.03.288
dc.relation.references[13] González-González, A.; Vazquez-Jimenez, L.K.; Paz-González, A.D.; Bolognesi, M.L.; Rivera G. Recent Advances in the Medicinal Chemistry of Phenothiazines, New Anticancer and Antiprotozoal Agents. Curr Med Chem.2021, 28, 7910–7936. https://doi.org/10.2174/0929867328666210405120330
dc.relation.references[14] Pluta, K.; Jeleń, M.; Morak-Młodawska, B.; Zimecki, M.; Artym, J.; Kocięba, M.; Anticancer Activity of Newly Synthesized Azaphenothiazinesfrom NCI's Anticancer Screening Bank. Pharmacol. Rep. 2010, 62, 319–332. https://doi.org/10.1016/s1734-1140(10)70272-3
dc.relation.references[15] Aarestrup, F.M. Occurrence of Glycopeptide Resistance among Enterococcus faecium Isolates from Conventional and Ecological Poultry Farms. Microb. Drug Resist.2009,1, 255–257. https://doi.org/10.1089/mdr.1995.1.255
dc.relation.references[16] Threlfall, E.J.; Ward, L.R.; Skinner, J.A.; Rowe, B. Increase in Multiple Antibiotic Resistance in Nontyphoidal Salmonellas from Humans in England and Wales: A Comparison of Data for 1994 and 1996. Microb.Drug Resist.2009,3, 263–266. https://doi.org/10.1089/mdr.1997.3.263
dc.relation.references[17] Onoabedje, E.A.; Okoro, U.C.; Knight, D.W. Rapid Access to New Angular Phenothiazine and Phenoxazine Dyes. J. HeterocyclicChem.2017, 54, 206–214. https://doi.org/10.1002/jhet.2569
dc.relation.references[18] Onoabedje, E.A.;Okoro, U.C.; Sarkar, A.; Knight, D.W. Synthesis and Structure of New Alkynyl Derivatives of Phenothiazine and Phenoxazine. J. Sulfur Chem. 2016, 34, 269–281. http://dx.doi.org/10.1080/17415993.2015.1131827
dc.relation.references[19] Onoabedje, E.A.; Okoro, U.C.; Sarkar, A.; Knight, D.W. Fuctionalization of Linear and Angular Phenothiazine and Phenoxazine Ring Systems viaPd(0)/XPhos Mediated Suzuki-Miyaura Cross-coupling Reactions. J Heterocyclic Chem. 2016,53, 1787–1794. https://doi.org/10.1002/jhet.2485
dc.relation.references[20] Ibeanu, F.N.; Onoabedje, E.A.; Ibezim, A.; Okoro,U.C. Synthesis, Characterization, Computational and Biological Study of Novel Azabenzo[a]phenothiazine and Azabenzo[b]phenoxazineHeterocycles as Potential Antibiotic Agent. Med Chem Res. 2018,27, 1093–1102. https://doi.org/10.1007/s0044-017-2131-3
dc.relation.references[21] Yu, X-Q.; Yamamoto, Y.; Miyaura, N. Aryl Triolborates: Novel Reagent for copper catalyzed N-Arylation of Amines, Amines, Anilines and Imidazoles.Chem. Asian J.2008, 3, 1517–1522. https://doi.org/10.1002/asia.200800135
dc.relation.references[22] Yamamoto, Y.; Takizawa, M.; Yu, X.-Q.; Miyaura, N. Cyclic Triolborates: Air and Water-Stable Ate Complexes of Organoboronic Acids. Angew. Chem. 2008, 120, 942–945. https://doi.org/10.1002/ange.200704162
dc.relation.references[23] Yamamoto, Y. Cyclic Triolborate Salts: Novel Reagent for Organic Synthesis. Heterocycles2012,85, 799–819.https://doi.org/10.3987/REV-12-728
dc.relation.references[24] Reller, L.B.; Weinstein,M.; Jorgensen,J.H.;Ferraro, M.J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis.2009, 49, 1749–1755. https://doi.org/https://doi.org/10.1086/647952
dc.relation.references[25] Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Truck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966,45, 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493
dc.relation.references[26] Trott, O.; Olson, A.J. AutoDockVina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comp Chem. 2010, 31, 455–461. https://doi.org/10.1002/jcc.21334
dc.relation.references[27] Lipinski C.A. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability.J PharmacolToxicol Methods2000, 44, 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
dc.relation.references[28] Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates.J Med Chem2002,45, 2615–2623. https://doi.org/10.1021/jm020017n
dc.relation.references[29] Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for Bad Bugs: Confronting the Challenges of Antibacterial Discovery. Nat. Rev. Drug Discov.2007,6, 29–40. https://doi.org/10.1038/nrd2201
dc.relation.references[30] Forsyth, R.A.; Haselbeck, R.J.; Ohlsen, K.L.; Yamamoto, R.T.; Xu, H.; Trawick, J.D.; Wall, D.; Wang, L.; Brown-Driver, V.; Froelich, J.M. et al. A Genome-Wide Strategy for the Identification of Essential Genes in Staphylococcusaureus. Mol. Microbiol.2002, 43, 1387–1400. https://doi.org/10.1046/j.1365-2958.2002.02832.x
dc.relation.references[31] Barker, D.F.; Campbell, A.M. Genetic and Biochemical Characterization of the birAGene and its Product: Evidence for a Direct Role of Biotin Holoenzyme Synthetasein Repression of the Biotin Operon in Escherichia coli. J. Mol. Biol. 1981,146, 469–492. https://doi.org/10.1016/0022-2836(81)90043-7
dc.relation.referencesen[1] Onoabedje, E.A.;Egu, S.A.; Ezeokonkwo M.A.; Okoro, U.C. Highlights of Molecular Structures and Applications of Phenothiazine & Phenoxazine Polycycles.J MolStruct.2019,1175, 956–962. https://doi.org/10.1016/j.molstruc.2018.08.064
dc.relation.referencesen[2] Posso, M.C.; Domingues, F.C.; Ferreira, S.; Silvestre, S. Development of phenothiazine hybrids with Potential Medicinal Interest: A Review. Molecules2022, 27, 276. https://doi.org/10.3390/molecules27010276
dc.relation.referencesen[3] Pluta, K.;Jeleń, M.;Morak-Młodawska, B.; Zimecki, M.; Artym, J.;Kocięba, M.;Zaczyńska, E. Azaphenothiazines – Promising Phenothiazine Derivatives. An Insight into Nomenclature, Synthesis, Structure Elucidation and Biological Properties. Eur J Med Chem. 2017, 138, 774–806. https://doi.org/10.1016/j.ejmech.2017.07.009
dc.relation.referencesen[4] Montoya, M.C.; DiDone, L.; Heier, R.F.; Meyers, M.J.; Krysan, D.J. Antifungal Phenothiazines: Optimization, Characterization of Mechanism, and Modulation of Neuroreceptor Activity. ACS Infect. Dis.2018,4, 499–507. https://doi.org/10.1021/acsinfecdis.7b00157
dc.relation.referencesen[5] Wen, B.; Zhou, M. Metabolic Activation of the Phenothiazine Antipsychotic Chlorpromazine and Thioridazineto ElectropholicIminoquinone Species in Human Liver Microsomesand Recombinant P450s. Chem. Biol. Interact.2009,181, 220–226. https://doi.org/10.1016/j.cbi.2009.05.014
dc.relation.referencesen[6] Sadanandam, Y.S.; Shetty, M.M.; Rao, A.B.; Rambabu, Y. 10H-Pehnothiazines: A New Class of Enzyme Inhibitors for Inflammatory Diseases. Eur. J. Med. Chem.2009, 44, 197–202. https://doi.org/10.1016/j.ejmech.2008.02.028
dc.relation.referencesen[7] Gopi, C.; Dhanaraju, M.D. Recent Progress in Synthesis, Structure and Biological Activities of Phenothiazine Derivatives. Rev. J. Chem.2019, 9,95–126. https://doi.org/10.1134/S2079978019020018
dc.relation.referencesen[8] Trivedi, A.R.; Siddiqui, A.B.; Shah, V.H. Design, Synthesis, Characterization and Antitubercular Activity of some 2-Heterocycle Substituted Phenothiazines.Arkivoc2008,2, 210–217. https://doi.org/10.3998/ark.5550190.0009.223
dc.relation.referencesen[9] Siddiqui, N.; Alam, S.M.; Ahsan, W. Synthesis, Anticonvulsant and Toxicity Evaluation of 2-(1H-indol-3-yl)acetyl-N-(substituted phenyl)hydrazine. Acta Pharm. 2008, 58, 445–54. https://doi.org/10.2478/v10007-008-0025-0
dc.relation.referencesen[10] Kumar, A.; Gurtu, S.; Agarwal, J.C.; Sinha, J.N.; Bhargava K.P.; Shanker, K. Synthesis and Cardiovascular Activity of Substituted 4-Azetidinones. J. Indian Chem. Soc.1983, 60, 608–610. https://doi.org/10.5281/zenodo.6348916
dc.relation.referencesen[11] Venkatesan, K.; Satyanarayana, V.S.V.; Sivakumar, A. Synthesis and Biological Evaluation of Novel Phenothiazine Derivatives as Potential Antitumor Agents. PolycyclAromatCompd2023, 43, 850–859. https://doi.org/10.1080/10406638.2021.2021254
dc.relation.referencesen[12] Onoabedje, E.A.;Okafor, S.N.; Akpomie, K.G.; Okoro, U.C. The Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles. Chem. Chem. Technol.2019, 13, 288–295. https://doi.org/10.23939/chcht13.03.288
dc.relation.referencesen[13] González-González, A.; Vazquez-Jimenez, L.K.; Paz-González, A.D.; Bolognesi, M.L.; Rivera G. Recent Advances in the Medicinal Chemistry of Phenothiazines, New Anticancer and Antiprotozoal Agents. Curr Med Chem.2021, 28, 7910–7936. https://doi.org/10.2174/0929867328666210405120330
dc.relation.referencesen[14] Pluta, K.; Jeleń, M.; Morak-Młodawska, B.; Zimecki, M.; Artym, J.; Kocięba, M.; Anticancer Activity of Newly Synthesized Azaphenothiazinesfrom NCI's Anticancer Screening Bank. Pharmacol. Rep. 2010, 62, 319–332. https://doi.org/10.1016/s1734-1140(10)70272-3
dc.relation.referencesen[15] Aarestrup, F.M. Occurrence of Glycopeptide Resistance among Enterococcus faecium Isolates from Conventional and Ecological Poultry Farms. Microb. Drug Resist.2009,1, 255–257. https://doi.org/10.1089/mdr.1995.1.255
dc.relation.referencesen[16] Threlfall, E.J.; Ward, L.R.; Skinner, J.A.; Rowe, B. Increase in Multiple Antibiotic Resistance in Nontyphoidal Salmonellas from Humans in England and Wales: A Comparison of Data for 1994 and 1996. Microb.Drug Resist.2009,3, 263–266. https://doi.org/10.1089/mdr.1997.3.263
dc.relation.referencesen[17] Onoabedje, E.A.; Okoro, U.C.; Knight, D.W. Rapid Access to New Angular Phenothiazine and Phenoxazine Dyes. J. HeterocyclicChem.2017, 54, 206–214. https://doi.org/10.1002/jhet.2569
dc.relation.referencesen[18] Onoabedje, E.A.;Okoro, U.C.; Sarkar, A.; Knight, D.W. Synthesis and Structure of New Alkynyl Derivatives of Phenothiazine and Phenoxazine. J. Sulfur Chem. 2016, 34, 269–281. http://dx.doi.org/10.1080/17415993.2015.1131827
dc.relation.referencesen[19] Onoabedje, E.A.; Okoro, U.C.; Sarkar, A.; Knight, D.W. Fuctionalization of Linear and Angular Phenothiazine and Phenoxazine Ring Systems viaPd(0)/XPhos Mediated Suzuki-Miyaura Cross-coupling Reactions. J Heterocyclic Chem. 2016,53, 1787–1794. https://doi.org/10.1002/jhet.2485
dc.relation.referencesen[20] Ibeanu, F.N.; Onoabedje, E.A.; Ibezim, A.; Okoro,U.C. Synthesis, Characterization, Computational and Biological Study of Novel Azabenzo[a]phenothiazine and Azabenzo[b]phenoxazineHeterocycles as Potential Antibiotic Agent. Med Chem Res. 2018,27, 1093–1102. https://doi.org/10.1007/s0044-017-2131-3
dc.relation.referencesen[21] Yu, X-Q.; Yamamoto, Y.; Miyaura, N. Aryl Triolborates: Novel Reagent for copper catalyzed N-Arylation of Amines, Amines, Anilines and Imidazoles.Chem. Asian J.2008, 3, 1517–1522. https://doi.org/10.1002/asia.200800135
dc.relation.referencesen[22] Yamamoto, Y.; Takizawa, M.; Yu, X.-Q.; Miyaura, N. Cyclic Triolborates: Air and Water-Stable Ate Complexes of Organoboronic Acids. Angew. Chem. 2008, 120, 942–945. https://doi.org/10.1002/ange.200704162
dc.relation.referencesen[23] Yamamoto, Y. Cyclic Triolborate Salts: Novel Reagent for Organic Synthesis. Heterocycles2012,85, 799–819.https://doi.org/10.3987/REV-12-728
dc.relation.referencesen[24] Reller, L.B.; Weinstein,M.; Jorgensen,J.H.;Ferraro, M.J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis.2009, 49, 1749–1755. https://doi.org/https://doi.org/10.1086/647952
dc.relation.referencesen[25] Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Truck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966,45, 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493
dc.relation.referencesen[26] Trott, O.; Olson, A.J. AutoDockVina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comp Chem. 2010, 31, 455–461. https://doi.org/10.1002/jcc.21334
dc.relation.referencesen[27] Lipinski C.A. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability.J PharmacolToxicol Methods2000, 44, 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
dc.relation.referencesen[28] Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates.J Med Chem2002,45, 2615–2623. https://doi.org/10.1021/jm020017n
dc.relation.referencesen[29] Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for Bad Bugs: Confronting the Challenges of Antibacterial Discovery. Nat. Rev. Drug Discov.2007,6, 29–40. https://doi.org/10.1038/nrd2201
dc.relation.referencesen[30] Forsyth, R.A.; Haselbeck, R.J.; Ohlsen, K.L.; Yamamoto, R.T.; Xu, H.; Trawick, J.D.; Wall, D.; Wang, L.; Brown-Driver, V.; Froelich, J.M. et al. A Genome-Wide Strategy for the Identification of Essential Genes in Staphylococcusaureus. Mol. Microbiol.2002, 43, 1387–1400. https://doi.org/10.1046/j.1365-2958.2002.02832.x
dc.relation.referencesen[31] Barker, D.F.; Campbell, A.M. Genetic and Biochemical Characterization of the birAGene and its Product: Evidence for a Direct Role of Biotin Holoenzyme Synthetasein Repression of the Biotin Operon in Escherichia coli. J. Mol. Biol. 1981,146, 469–492. https://doi.org/10.1016/0022-2836(81)90043-7
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2018.08.064
dc.relation.urihttps://doi.org/10.3390/molecules27010276
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2017.07.009
dc.relation.urihttps://doi.org/10.1021/acsinfecdis.7b00157
dc.relation.urihttps://doi.org/10.1016/j.cbi.2009.05.014
dc.relation.urihttps://doi.org/10.1016/j.ejmech.2008.02.028
dc.relation.urihttps://doi.org/10.1134/S2079978019020018
dc.relation.urihttps://doi.org/10.3998/ark.5550190.0009.223
dc.relation.urihttps://doi.org/10.2478/v10007-008-0025-0
dc.relation.urihttps://doi.org/10.5281/zenodo.6348916
dc.relation.urihttps://doi.org/10.1080/10406638.2021.2021254
dc.relation.urihttps://doi.org/10.23939/chcht13.03.288
dc.relation.urihttps://doi.org/10.2174/0929867328666210405120330
dc.relation.urihttps://doi.org/10.1016/s1734-1140(10)70272-3
dc.relation.urihttps://doi.org/10.1089/mdr.1995.1.255
dc.relation.urihttps://doi.org/10.1089/mdr.1997.3.263
dc.relation.urihttps://doi.org/10.1002/jhet.2569
dc.relation.urihttp://dx.doi.org/10.1080/17415993.2015.1131827
dc.relation.urihttps://doi.org/10.1002/jhet.2485
dc.relation.urihttps://doi.org/10.1007/s0044-017-2131-3
dc.relation.urihttps://doi.org/10.1002/asia.200800135
dc.relation.urihttps://doi.org/10.1002/ange.200704162
dc.relation.urihttps://doi.org/10.3987/REV-12-728
dc.relation.urihttps://doi.org/https://doi.org/10.1086/647952
dc.relation.urihttps://doi.org/10.1093/ajcp/45.4_ts.493
dc.relation.urihttps://doi.org/10.1002/jcc.21334
dc.relation.urihttps://doi.org/10.1016/S1056-8719(00)00107-6
dc.relation.urihttps://doi.org/10.1021/jm020017n
dc.relation.urihttps://doi.org/10.1038/nrd2201
dc.relation.urihttps://doi.org/10.1046/j.1365-2958.2002.02832.x
dc.relation.urihttps://doi.org/10.1016/0022-2836(81)90043-7
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Ibeanu F. N., Ezeokonkwo M. A., Onoabedje E. A., Eze C. C., Godwin-Nwakwasi E. U., Okoro U. C., 2023
dc.subjectфенотіазин
dc.subjectреакція кроскопуляції Бухвальда-Гартвіга
dc.subjectантимікробна дія
dc.subjectin silico
dc.subjectin vitro
dc.subjectphenothiazine
dc.subjectBuchwald-Hartwig crosscoupling
dc.subjectantimicrobial
dc.subjectin silico
dc.subjectin vitro
dc.titleSynthesis, Antimicrobial and Computational Studies of New Branched Azaphenothiazinones Derivatives
dc.title.alternativeСинтез, антимікробні й обчислювальні дослідження нових похідних розгалужених азафенотіазинонів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Ibeanu_F_N-Synthesis_Antimicrobial_786-795.pdf
Size:
608.75 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Ibeanu_F_N-Synthesis_Antimicrobial_786-795__COVER.png
Size:
558.33 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: