Amidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones
dc.citation.epage | 423 | |
dc.citation.issue | 4 | |
dc.citation.spage | 417 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Institute of Organic Chemistry of National Academy of Sciences of Ukraine | |
dc.contributor.author | Stasevych, Maryna | |
dc.contributor.author | Zvarych, Viktor | |
dc.contributor.author | Novikov, Volodymyr | |
dc.contributor.author | Vovk, Mykhailo | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-03-03T09:04:21Z | |
dc.date.available | 2020-03-03T09:04:21Z | |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.description.abstract | Взаємодією (9,10-діоксоантраценіл-1)-гідразонів малонодинітрилу, етилових естерів ціанацетатної та ацетацетатної кислот, а також ацетилацетону із гідроксил аміном у киплячому діоксані у присутності ацетату натрію проведено модифікацію функціоналізованого гідразонного угруповання амідоксимними фрагментами. Встановлено, що реакція N-(9,10-діоксо-9,10-дигідроантрацен-1-іл)карбоногід-разоноілдиціаніду 1 з NH2OH приводить до утворення 2-(2-(9,10-діоксо-9,10-дигідроантрацен-1-іл)гідразиніліден)-N'1,N'3-дигідроксималонімідаміду 2 як основного та 3-аміно-2-(2-(9,10-діоксо-9,10-дигідроантрацен-1-іл)гідразиніліден)-3-(гідрокси-іміно)пропанаміду 3 як мінорного продукта. Методами 1Н, 13С ЯМР-спектроскопії та хроматомас-спектрометрії встановлено, що взаємодія 9,10-діоксоантраценілгідразону ацетил ацетону 5 із гідроксиламіном супроводжується елімінуванням ацетильного фрагмента, наслідком чого є утворення 1-[2-(2-(гідроксиіміно)пропіліден)гідразиніл]антрацен-9,10-діону 9. Запропоновано вірогідні механізми утворення амідоксимів 3 та 9. Проведені квантово-хімічні DFT-розрахунки вільної енергії ГіббсаDG для амідоксимної форми похідних 2, 3, 7-9 гібридним методом М06-2Х в базисному наборі 6-311++G(d,p) із використанням сольватаційної моделі SMD у ДМСО з метою визначення конформаційної переваги Z- або E-ізомерів. | |
dc.description.abstract | New (9,10-dioxoanthracen-1-yl)hydrazones containing amidoxime fragments were synthesized by the interaction of corresponding hydrazones of malonodinitrile, ethyl cyanacetate, ethyl acetoacetate, and acetylacetone with hydroxylamine in boiling dioxane in the presence of sodium acetate. It was established that the reaction of N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)carbonohydrazonoyldicyanide 1 with NH2OH leads to the formation of 2-(2-(9,10-dioxo-9,10-dihydroanthracen-1-yl)hydrazinylidene)-N'1,N'3-dihydroxymalonimidamide 2 as the major product, and 3-amino-2-(2-(9,10-dioxo-9,10-dihydroanthracen-1-yl)hydrazinylidene)-3-(hydroxyimino) propanamide 3 as a minor product. The 1H, 13C NMR and LC-MS data showed that the interaction of 9,10-dioxoanthracenylhydrazone of acetylacetone 5 by hydroxylamine is accompanied with the elimination of the acetyl fragment formed 1-[2-(2-(hydroxyimino) propylidene)hydrazinyl]anthracene-9,10-dione 9. Possible mechanisms for the formation of amidoximes 3 and 9 are proposed. Quantum-chemical DFT calculations of the Gibbs free energy (DG) to determine conformational advantage of Z- or E-isomers for the amidoxime form of the derivatives 2,3,7-9 were carried out using the M06-2X hybrid method with 6-311++G(d, p) basis set and the SMD solvation model in DMSO. | |
dc.format.extent | 417-423 | |
dc.format.pages | 7 | |
dc.identifier.citation | Amidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones / Maryna Stasevych, Viktor Zvarych, Volodymyr Novikov, Mykhailo Vovk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 417–423. | |
dc.identifier.citationen | Amidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones / Maryna Stasevych, Viktor Zvarych, Volodymyr Novikov, Mykhailo Vovk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 417–423. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46508 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 4 (13), 2019 | |
dc.relation.references | 1. Ahlam M.: Raf. Jour. Sci., 2008, 19, 59. | |
dc.relation.references | 2. Fylaktakidou K., Hadjipavlou-Litina D., Litinas K. et al.: Curr. Pharm. Des., 2008, 14, 1001. https://doi.org/10.2174/138161208784139675 | |
dc.relation.references | 3. Katirtzi A.: Diploma Thesis, Charles University, 2015. | |
dc.relation.references | 4. Vaughan C.: Proc. Bayl. Univ. Med. Cent., 2005, 18, 76. | |
dc.relation.references | 5. HawkinsM., Lewis J.: Expert Opin. DrugMetab. Toxicol., 2012, 8, 1521. https://doi.org/10.1517/17425255.2012.724060 | |
dc.relation.references | 6. Southworth H.: Statist. Med., 2014, 33, 2914. https://doi.org/10.1002/sim.6142 | |
dc.relation.references | 7. Fontana R.: Gastroenterology, 2014, 146, 914. https://doi.org/10.1053/j.gastro.2013.12.032 | |
dc.relation.references | 8. Van Ryn J., Stangier J., Haertter S. et al.: Thromb. Haemost., 2010, 103, 1116. https://doi.org/10.1160/TH09-11-0758 | |
dc.relation.references | 9. Clement B., Kotthaus J., Kotthaus J., Schade D.: Pat. EP 2550966 A1 20130130, Publ. Jan. 30, 2013. | |
dc.relation.references | 10. Hall E., Kerrigan J., Ramachandran K. et al.: Antimicrob. Agents Chemother. 1998, 42, 666. https://doi.org/10.1128/AAC.42.3.666 | |
dc.relation.references | 11. Schade D., Kotthaus J., Riebling L. et al.: J. Med. Chem. 2014, 57, 759. https://doi.org/10.1021/jm401492x | |
dc.relation.references | 12. Sperl S., BurgleM., Schmalix W. et al.: Pat. US 20060142305 A1 20060629, Publ. June 29, 2006. | |
dc.relation.references | 13. ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT01069965 | |
dc.relation.references | 14. Frank P., Novak R.: Biochem. Pharmacol., 1985, 34, 3609. https://doi.org/10.1016/0006-2952(85)90744-0 | |
dc.relation.references | 15. Gan K., Teng C., Lin H. et al.: Biol. Pharm. Bull., 2008, 31, 1547. https://doi.org/10.1248/bpb.31.1547 | |
dc.relation.references | 16. Halenova T., Nikolaeva I., Stasevych M. et al.: Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 1626. | |
dc.relation.references | 17. Zvarych V., Stasevych M., Lunin V. et al.:Monatsh. Chem., 2016, 147, 2093. https://doi.org/10.1007/s00706-016-1839-y | |
dc.relation.references | 18. Stasevych M., Zvarych V., Lunin V. et al.:Monatsh. Chem., 2018, 149, 1111. https://doi.org/10.1007/s00706-018-2157-3 | |
dc.relation.references | 19. Zvarich V., StasevichM., Stanko O. et al.: Pharm. Chem. J., 2014, 48, 584. https://doi.org/10.1007/s11094-014-1154-z | |
dc.relation.references | 20. Stasevych M., Zvarych V., Lunin V. et al.: Indian J. Pharm. Sci., 2015, 77, 634. https://doi.org/10.4103/0250-474X.169062 | |
dc.relation.references | 21. Stasevych M., Zvarych V., Lunin V. et al.: SAR & QSAR in Environ. Res., 2017, 28, 355. https://doi.org/10.1080/1062936X.2017.1323796 | |
dc.relation.references | 22. Stasevych M., Zvarych V., Musyanovych R. et al.: Chem. Chem. Technol., 2014, 8, 135. https://doi.org/10.23939/chcht08.02.135 | |
dc.relation.references | 23. Stasevych M., Zvarych V., Lunin V. et al.: Chem. Chem. Technol., 2017, 11, 1. https://doi.org/10.23939/chcht11.01.001 | |
dc.relation.references | 24. Stasevych M., Zvarych V., Khomyak S. et al.: Chem. Chem. Technol., 2018, 12, 300. https://doi.org/10.23939/chcht12.03.300 | |
dc.relation.references | 25. Stasevych M., Zvarych V., Lunin V. et al.: Rus. J. Org. Chem., 2017, 53, 468. https://doi.org/10.1134/S1070428017030277 | |
dc.relation.references | 26. Stasevych M., Zvarych V., Lunin V. et al.: Chem. Heterocycl. Compd., 2017, 53, 942. https://doi.org/10.1007/s10593-017-2148-z | |
dc.relation.references | 27. Gaussian 09, Revision B.01, FrischM.J., Trucks G.W., Schlegel H.B. et al.: Gaussian, Inc., Wallingford CT, 2009. | |
dc.relation.references | 28. Exner O., Motekov N.: Collect. Czech. Chem. Commun. 1986, 51, 1444. https://doi.org/10.1135/cccc19861444 | |
dc.relation.references | 29. Exner O.: Collect. Czech. Chem. Commun., 1965, 30, 652. https://doi.org/10.1135/cccc19650652 | |
dc.relation.references | 30. Exner O., Motekov N.: Collect. Czech. Chem. Commun., 1978, 43, 2740. https://doi.org/10.1135/cccc19782740 | |
dc.relation.references | 31. Tinant B., Dupont-Fenfau J., Declercq J.-P. et al.: Collect. Czech. Chem. Commun., 1989, 54, 3245. https://doi.org/10.1135/cccc19893245 | |
dc.relation.references | 32. Srivastava R., PereiraM., FaustinoW. et al.:Monatsh. Chem, 2009, 140, 1319. https://doi.org/10.1007/s00706-009-0186-7 | |
dc.relation.references | 33. Vörös A., Mucsi Z., Baán Z. et al.: Org. Biomol. Chem., 2014, 12, 8036. https://doi.org/10.1039/C4OB00854E | |
dc.relation.references | 34. Rosenberg S., Silver S., Sayer J. et al.: J. Am. Chem. Soc., 1974, 96, 7986. https://doi.org/10.1021/ja00833a026 | |
dc.relation.references | 35. Heckendorn R.: Bull. Soc. Chin. Belg. 1986, 95, 921. https://doi.org/10.1002/bscb.19860951101 | |
dc.relation.references | 36. Novikov A., Bolotin D.: J. Phys. Org. Chem., 2017, e3772. https://doi.org/10.1002/poc.3772 | |
dc.relation.references | 37. Bolotin D., Bokach N., Kukushkin V.: Coord. Chem. Rev., 2016, 313, 62. https://doi.org/10.1016/j.ccr.2015.10.005 | |
dc.relation.references | 38. Tavakol H., Arshadi S.: J. Mol. Model., 2009, 15, 807. https://doi.org/10.1007/s00894-008-0435-4 | |
dc.relation.references | 39. Su X., Aprahamian I.: Org. Lett., 2011, 13, 30. https://doi.org/10.1021/ol102422h | |
dc.relation.references | 40. Johnson J., Carvallo C., Dolliver D. et al.: Aust. J. Chem., 2007, 60, 685. https://doi.org/10.1071/CH07157 | |
dc.relation.referencesen | 1. Ahlam M., Raf. Jour. Sci., 2008, 19, 59. | |
dc.relation.referencesen | 2. Fylaktakidou K., Hadjipavlou-Litina D., Litinas K. et al., Curr. Pharm. Des., 2008, 14, 1001. https://doi.org/10.2174/138161208784139675 | |
dc.relation.referencesen | 3. Katirtzi A., Diploma Thesis, Charles University, 2015. | |
dc.relation.referencesen | 4. Vaughan C., Proc. Bayl. Univ. Med. Cent., 2005, 18, 76. | |
dc.relation.referencesen | 5. HawkinsM., Lewis J., Expert Opin. DrugMetab. Toxicol., 2012, 8, 1521. https://doi.org/10.1517/17425255.2012.724060 | |
dc.relation.referencesen | 6. Southworth H., Statist. Med., 2014, 33, 2914. https://doi.org/10.1002/sim.6142 | |
dc.relation.referencesen | 7. Fontana R., Gastroenterology, 2014, 146, 914. https://doi.org/10.1053/j.gastro.2013.12.032 | |
dc.relation.referencesen | 8. Van Ryn J., Stangier J., Haertter S. et al., Thromb. Haemost., 2010, 103, 1116. https://doi.org/10.1160/TH09-11-0758 | |
dc.relation.referencesen | 9. Clement B., Kotthaus J., Kotthaus J., Schade D., Pat. EP 2550966 A1 20130130, Publ. Jan. 30, 2013. | |
dc.relation.referencesen | 10. Hall E., Kerrigan J., Ramachandran K. et al., Antimicrob. Agents Chemother. 1998, 42, 666. https://doi.org/10.1128/AAC.42.3.666 | |
dc.relation.referencesen | 11. Schade D., Kotthaus J., Riebling L. et al., J. Med. Chem. 2014, 57, 759. https://doi.org/10.1021/jm401492x | |
dc.relation.referencesen | 12. Sperl S., BurgleM., Schmalix W. et al., Pat. US 20060142305 A1 20060629, Publ. June 29, 2006. | |
dc.relation.referencesen | 13. ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT01069965 | |
dc.relation.referencesen | 14. Frank P., Novak R., Biochem. Pharmacol., 1985, 34, 3609. https://doi.org/10.1016/0006-2952(85)90744-0 | |
dc.relation.referencesen | 15. Gan K., Teng C., Lin H. et al., Biol. Pharm. Bull., 2008, 31, 1547. https://doi.org/10.1248/bpb.31.1547 | |
dc.relation.referencesen | 16. Halenova T., Nikolaeva I., Stasevych M. et al., Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 1626. | |
dc.relation.referencesen | 17. Zvarych V., Stasevych M., Lunin V. et al.:Monatsh. Chem., 2016, 147, 2093. https://doi.org/10.1007/s00706-016-1839-y | |
dc.relation.referencesen | 18. Stasevych M., Zvarych V., Lunin V. et al.:Monatsh. Chem., 2018, 149, 1111. https://doi.org/10.1007/s00706-018-2157-3 | |
dc.relation.referencesen | 19. Zvarich V., StasevichM., Stanko O. et al., Pharm. Chem. J., 2014, 48, 584. https://doi.org/10.1007/s11094-014-1154-z | |
dc.relation.referencesen | 20. Stasevych M., Zvarych V., Lunin V. et al., Indian J. Pharm. Sci., 2015, 77, 634. https://doi.org/10.4103/0250-474X.169062 | |
dc.relation.referencesen | 21. Stasevych M., Zvarych V., Lunin V. et al., SAR & QSAR in Environ. Res., 2017, 28, 355. https://doi.org/10.1080/1062936X.2017.1323796 | |
dc.relation.referencesen | 22. Stasevych M., Zvarych V., Musyanovych R. et al., Chem. Chem. Technol., 2014, 8, 135. https://doi.org/10.23939/chcht08.02.135 | |
dc.relation.referencesen | 23. Stasevych M., Zvarych V., Lunin V. et al., Chem. Chem. Technol., 2017, 11, 1. https://doi.org/10.23939/chcht11.01.001 | |
dc.relation.referencesen | 24. Stasevych M., Zvarych V., Khomyak S. et al., Chem. Chem. Technol., 2018, 12, 300. https://doi.org/10.23939/chcht12.03.300 | |
dc.relation.referencesen | 25. Stasevych M., Zvarych V., Lunin V. et al., Rus. J. Org. Chem., 2017, 53, 468. https://doi.org/10.1134/S1070428017030277 | |
dc.relation.referencesen | 26. Stasevych M., Zvarych V., Lunin V. et al., Chem. Heterocycl. Compd., 2017, 53, 942. https://doi.org/10.1007/s10593-017-2148-z | |
dc.relation.referencesen | 27. Gaussian 09, Revision B.01, FrischM.J., Trucks G.W., Schlegel H.B. et al., Gaussian, Inc., Wallingford CT, 2009. | |
dc.relation.referencesen | 28. Exner O., Motekov N., Collect. Czech. Chem. Commun. 1986, 51, 1444. https://doi.org/10.1135/cccc19861444 | |
dc.relation.referencesen | 29. Exner O., Collect. Czech. Chem. Commun., 1965, 30, 652. https://doi.org/10.1135/cccc19650652 | |
dc.relation.referencesen | 30. Exner O., Motekov N., Collect. Czech. Chem. Commun., 1978, 43, 2740. https://doi.org/10.1135/cccc19782740 | |
dc.relation.referencesen | 31. Tinant B., Dupont-Fenfau J., Declercq J.-P. et al., Collect. Czech. Chem. Commun., 1989, 54, 3245. https://doi.org/10.1135/cccc19893245 | |
dc.relation.referencesen | 32. Srivastava R., PereiraM., FaustinoW. et al.:Monatsh. Chem, 2009, 140, 1319. https://doi.org/10.1007/s00706-009-0186-7 | |
dc.relation.referencesen | 33. Vörös A., Mucsi Z., Baán Z. et al., Org. Biomol. Chem., 2014, 12, 8036. https://doi.org/10.1039/P.4OB00854E | |
dc.relation.referencesen | 34. Rosenberg S., Silver S., Sayer J. et al., J. Am. Chem. Soc., 1974, 96, 7986. https://doi.org/10.1021/ja00833a026 | |
dc.relation.referencesen | 35. Heckendorn R., Bull. Soc. Chin. Belg. 1986, 95, 921. https://doi.org/10.1002/bscb.19860951101 | |
dc.relation.referencesen | 36. Novikov A., Bolotin D., J. Phys. Org. Chem., 2017, e3772. https://doi.org/10.1002/poc.3772 | |
dc.relation.referencesen | 37. Bolotin D., Bokach N., Kukushkin V., Coord. Chem. Rev., 2016, 313, 62. https://doi.org/10.1016/j.ccr.2015.10.005 | |
dc.relation.referencesen | 38. Tavakol H., Arshadi S., J. Mol. Model., 2009, 15, 807. https://doi.org/10.1007/s00894-008-0435-4 | |
dc.relation.referencesen | 39. Su X., Aprahamian I., Org. Lett., 2011, 13, 30. https://doi.org/10.1021/ol102422h | |
dc.relation.referencesen | 40. Johnson J., Carvallo C., Dolliver D. et al., Aust. J. Chem., 2007, 60, 685. https://doi.org/10.1071/CH07157 | |
dc.relation.uri | https://doi.org/10.2174/138161208784139675 | |
dc.relation.uri | https://doi.org/10.1517/17425255.2012.724060 | |
dc.relation.uri | https://doi.org/10.1002/sim.6142 | |
dc.relation.uri | https://doi.org/10.1053/j.gastro.2013.12.032 | |
dc.relation.uri | https://doi.org/10.1160/TH09-11-0758 | |
dc.relation.uri | https://doi.org/10.1128/AAC.42.3.666 | |
dc.relation.uri | https://doi.org/10.1021/jm401492x | |
dc.relation.uri | http://clinicaltrials.gov/ct2/show/NCT01069965 | |
dc.relation.uri | https://doi.org/10.1016/0006-2952(85)90744-0 | |
dc.relation.uri | https://doi.org/10.1248/bpb.31.1547 | |
dc.relation.uri | https://doi.org/10.1007/s00706-016-1839-y | |
dc.relation.uri | https://doi.org/10.1007/s00706-018-2157-3 | |
dc.relation.uri | https://doi.org/10.1007/s11094-014-1154-z | |
dc.relation.uri | https://doi.org/10.4103/0250-474X.169062 | |
dc.relation.uri | https://doi.org/10.1080/1062936X.2017.1323796 | |
dc.relation.uri | https://doi.org/10.23939/chcht08.02.135 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.01.001 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.03.300 | |
dc.relation.uri | https://doi.org/10.1134/S1070428017030277 | |
dc.relation.uri | https://doi.org/10.1007/s10593-017-2148-z | |
dc.relation.uri | https://doi.org/10.1135/cccc19861444 | |
dc.relation.uri | https://doi.org/10.1135/cccc19650652 | |
dc.relation.uri | https://doi.org/10.1135/cccc19782740 | |
dc.relation.uri | https://doi.org/10.1135/cccc19893245 | |
dc.relation.uri | https://doi.org/10.1007/s00706-009-0186-7 | |
dc.relation.uri | https://doi.org/10.1039/C4OB00854E | |
dc.relation.uri | https://doi.org/10.1021/ja00833a026 | |
dc.relation.uri | https://doi.org/10.1002/bscb.19860951101 | |
dc.relation.uri | https://doi.org/10.1002/poc.3772 | |
dc.relation.uri | https://doi.org/10.1016/j.ccr.2015.10.005 | |
dc.relation.uri | https://doi.org/10.1007/s00894-008-0435-4 | |
dc.relation.uri | https://doi.org/10.1021/ol102422h | |
dc.relation.uri | https://doi.org/10.1071/CH07157 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Stasevych M., Zvarych V., Novikov V., Vovk M., 2019 | |
dc.subject | 9 | |
dc.subject | 10-діоксоантраценілгідразони | |
dc.subject | амідоксими | |
dc.subject | геометрична ізомерія | |
dc.subject | DFT-розрахунки | |
dc.subject | М06-2Х/6-311++G(d | |
dc.subject | p) | |
dc.subject | 9 | |
dc.subject | 10-dioxoanthracenyl hydrazones | |
dc.subject | amidoximes | |
dc.subject | geometric isomerism | |
dc.subject | DFT calculations | |
dc.subject | М06-2Х/6-311++G(d | |
dc.subject | p) | |
dc.title | Amidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones | |
dc.title.alternative | Амідоксим-функціоналізовані (9,10-діоксоантрацен-1-іл)гідразони | |
dc.type | Article |
Files
License bundle
1 - 1 of 1