Amidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones

dc.citation.epage423
dc.citation.issue4
dc.citation.spage417
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Organic Chemistry of National Academy of Sciences of Ukraine
dc.contributor.authorStasevych, Maryna
dc.contributor.authorZvarych, Viktor
dc.contributor.authorNovikov, Volodymyr
dc.contributor.authorVovk, Mykhailo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-03T09:04:21Z
dc.date.available2020-03-03T09:04:21Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractВзаємодією (9,10-діоксоантраценіл-1)-гідразонів малонодинітрилу, етилових естерів ціанацетатної та ацетацетатної кислот, а також ацетилацетону із гідроксил аміном у киплячому діоксані у присутності ацетату натрію проведено модифікацію функціоналізованого гідразонного угруповання амідоксимними фрагментами. Встановлено, що реакція N-(9,10-діоксо-9,10-дигідроантрацен-1-іл)карбоногід-разоноілдиціаніду 1 з NH2OH приводить до утворення 2-(2-(9,10-діоксо-9,10-дигідроантрацен-1-іл)гідразиніліден)-N'1,N'3-дигідроксималонімідаміду 2 як основного та 3-аміно-2-(2-(9,10-діоксо-9,10-дигідроантрацен-1-іл)гідразиніліден)-3-(гідрокси-іміно)пропанаміду 3 як мінорного продукта. Методами 1Н, 13С ЯМР-спектроскопії та хроматомас-спектрометрії встановлено, що взаємодія 9,10-діоксоантраценілгідразону ацетил ацетону 5 із гідроксиламіном супроводжується елімінуванням ацетильного фрагмента, наслідком чого є утворення 1-[2-(2-(гідроксиіміно)пропіліден)гідразиніл]антрацен-9,10-діону 9. Запропоновано вірогідні механізми утворення амідоксимів 3 та 9. Проведені квантово-хімічні DFT-розрахунки вільної енергії ГіббсаDG для амідоксимної форми похідних 2, 3, 7-9 гібридним методом М06-2Х в базисному наборі 6-311++G(d,p) із використанням сольватаційної моделі SMD у ДМСО з метою визначення конформаційної переваги Z- або E-ізомерів.
dc.description.abstractNew (9,10-dioxoanthracen-1-yl)hydrazones containing amidoxime fragments were synthesized by the interaction of corresponding hydrazones of malonodinitrile, ethyl cyanacetate, ethyl acetoacetate, and acetylacetone with hydroxylamine in boiling dioxane in the presence of sodium acetate. It was established that the reaction of N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)carbonohydrazonoyldicyanide 1 with NH2OH leads to the formation of 2-(2-(9,10-dioxo-9,10-dihydroanthracen-1-yl)hydrazinylidene)-N'1,N'3-dihydroxymalonimidamide 2 as the major product, and 3-amino-2-(2-(9,10-dioxo-9,10-dihydroanthracen-1-yl)hydrazinylidene)-3-(hydroxyimino) propanamide 3 as a minor product. The 1H, 13C NMR and LC-MS data showed that the interaction of 9,10-dioxoanthracenylhydrazone of acetylacetone 5 by hydroxylamine is accompanied with the elimination of the acetyl fragment formed 1-[2-(2-(hydroxyimino) propylidene)hydrazinyl]anthracene-9,10-dione 9. Possible mechanisms for the formation of amidoximes 3 and 9 are proposed. Quantum-chemical DFT calculations of the Gibbs free energy (DG) to determine conformational advantage of Z- or E-isomers for the amidoxime form of the derivatives 2,3,7-9 were carried out using the M06-2X hybrid method with 6-311++G(d, p) basis set and the SMD solvation model in DMSO.
dc.format.extent417-423
dc.format.pages7
dc.identifier.citationAmidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones / Maryna Stasevych, Viktor Zvarych, Volodymyr Novikov, Mykhailo Vovk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 417–423.
dc.identifier.citationenAmidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones / Maryna Stasevych, Viktor Zvarych, Volodymyr Novikov, Mykhailo Vovk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 417–423.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46508
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (13), 2019
dc.relation.references1. Ahlam M.: Raf. Jour. Sci., 2008, 19, 59.
dc.relation.references2. Fylaktakidou K., Hadjipavlou-Litina D., Litinas K. et al.: Curr. Pharm. Des., 2008, 14, 1001. https://doi.org/10.2174/138161208784139675
dc.relation.references3. Katirtzi A.: Diploma Thesis, Charles University, 2015.
dc.relation.references4. Vaughan C.: Proc. Bayl. Univ. Med. Cent., 2005, 18, 76.
dc.relation.references5. HawkinsM., Lewis J.: Expert Opin. DrugMetab. Toxicol., 2012, 8, 1521. https://doi.org/10.1517/17425255.2012.724060
dc.relation.references6. Southworth H.: Statist. Med., 2014, 33, 2914. https://doi.org/10.1002/sim.6142
dc.relation.references7. Fontana R.: Gastroenterology, 2014, 146, 914. https://doi.org/10.1053/j.gastro.2013.12.032
dc.relation.references8. Van Ryn J., Stangier J., Haertter S. et al.: Thromb. Haemost., 2010, 103, 1116. https://doi.org/10.1160/TH09-11-0758
dc.relation.references9. Clement B., Kotthaus J., Kotthaus J., Schade D.: Pat. EP 2550966 A1 20130130, Publ. Jan. 30, 2013.
dc.relation.references10. Hall E., Kerrigan J., Ramachandran K. et al.: Antimicrob. Agents Chemother. 1998, 42, 666. https://doi.org/10.1128/AAC.42.3.666
dc.relation.references11. Schade D., Kotthaus J., Riebling L. et al.: J. Med. Chem. 2014, 57, 759. https://doi.org/10.1021/jm401492x
dc.relation.references12. Sperl S., BurgleM., Schmalix W. et al.: Pat. US 20060142305 A1 20060629, Publ. June 29, 2006.
dc.relation.references13. ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT01069965
dc.relation.references14. Frank P., Novak R.: Biochem. Pharmacol., 1985, 34, 3609. https://doi.org/10.1016/0006-2952(85)90744-0
dc.relation.references15. Gan K., Teng C., Lin H. et al.: Biol. Pharm. Bull., 2008, 31, 1547. https://doi.org/10.1248/bpb.31.1547
dc.relation.references16. Halenova T., Nikolaeva I., Stasevych M. et al.: Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 1626.
dc.relation.references17. Zvarych V., Stasevych M., Lunin V. et al.:Monatsh. Chem., 2016, 147, 2093. https://doi.org/10.1007/s00706-016-1839-y
dc.relation.references18. Stasevych M., Zvarych V., Lunin V. et al.:Monatsh. Chem., 2018, 149, 1111. https://doi.org/10.1007/s00706-018-2157-3
dc.relation.references19. Zvarich V., StasevichM., Stanko O. et al.: Pharm. Chem. J., 2014, 48, 584. https://doi.org/10.1007/s11094-014-1154-z
dc.relation.references20. Stasevych M., Zvarych V., Lunin V. et al.: Indian J. Pharm. Sci., 2015, 77, 634. https://doi.org/10.4103/0250-474X.169062
dc.relation.references21. Stasevych M., Zvarych V., Lunin V. et al.: SAR & QSAR in Environ. Res., 2017, 28, 355. https://doi.org/10.1080/1062936X.2017.1323796
dc.relation.references22. Stasevych M., Zvarych V., Musyanovych R. et al.: Chem. Chem. Technol., 2014, 8, 135. https://doi.org/10.23939/chcht08.02.135
dc.relation.references23. Stasevych M., Zvarych V., Lunin V. et al.: Chem. Chem. Technol., 2017, 11, 1. https://doi.org/10.23939/chcht11.01.001
dc.relation.references24. Stasevych M., Zvarych V., Khomyak S. et al.: Chem. Chem. Technol., 2018, 12, 300. https://doi.org/10.23939/chcht12.03.300
dc.relation.references25. Stasevych M., Zvarych V., Lunin V. et al.: Rus. J. Org. Chem., 2017, 53, 468. https://doi.org/10.1134/S1070428017030277
dc.relation.references26. Stasevych M., Zvarych V., Lunin V. et al.: Chem. Heterocycl. Compd., 2017, 53, 942. https://doi.org/10.1007/s10593-017-2148-z
dc.relation.references27. Gaussian 09, Revision B.01, FrischM.J., Trucks G.W., Schlegel H.B. et al.: Gaussian, Inc., Wallingford CT, 2009.
dc.relation.references28. Exner O., Motekov N.: Collect. Czech. Chem. Commun. 1986, 51, 1444. https://doi.org/10.1135/cccc19861444
dc.relation.references29. Exner O.: Collect. Czech. Chem. Commun., 1965, 30, 652. https://doi.org/10.1135/cccc19650652
dc.relation.references30. Exner O., Motekov N.: Collect. Czech. Chem. Commun., 1978, 43, 2740. https://doi.org/10.1135/cccc19782740
dc.relation.references31. Tinant B., Dupont-Fenfau J., Declercq J.-P. et al.: Collect. Czech. Chem. Commun., 1989, 54, 3245. https://doi.org/10.1135/cccc19893245
dc.relation.references32. Srivastava R., PereiraM., FaustinoW. et al.:Monatsh. Chem, 2009, 140, 1319. https://doi.org/10.1007/s00706-009-0186-7
dc.relation.references33. Vörös A., Mucsi Z., Baán Z. et al.: Org. Biomol. Chem., 2014, 12, 8036. https://doi.org/10.1039/C4OB00854E
dc.relation.references34. Rosenberg S., Silver S., Sayer J. et al.: J. Am. Chem. Soc., 1974, 96, 7986. https://doi.org/10.1021/ja00833a026
dc.relation.references35. Heckendorn R.: Bull. Soc. Chin. Belg. 1986, 95, 921. https://doi.org/10.1002/bscb.19860951101
dc.relation.references36. Novikov A., Bolotin D.: J. Phys. Org. Chem., 2017, e3772. https://doi.org/10.1002/poc.3772
dc.relation.references37. Bolotin D., Bokach N., Kukushkin V.: Coord. Chem. Rev., 2016, 313, 62. https://doi.org/10.1016/j.ccr.2015.10.005
dc.relation.references38. Tavakol H., Arshadi S.: J. Mol. Model., 2009, 15, 807. https://doi.org/10.1007/s00894-008-0435-4
dc.relation.references39. Su X., Aprahamian I.: Org. Lett., 2011, 13, 30. https://doi.org/10.1021/ol102422h
dc.relation.references40. Johnson J., Carvallo C., Dolliver D. et al.: Aust. J. Chem., 2007, 60, 685. https://doi.org/10.1071/CH07157
dc.relation.referencesen1. Ahlam M., Raf. Jour. Sci., 2008, 19, 59.
dc.relation.referencesen2. Fylaktakidou K., Hadjipavlou-Litina D., Litinas K. et al., Curr. Pharm. Des., 2008, 14, 1001. https://doi.org/10.2174/138161208784139675
dc.relation.referencesen3. Katirtzi A., Diploma Thesis, Charles University, 2015.
dc.relation.referencesen4. Vaughan C., Proc. Bayl. Univ. Med. Cent., 2005, 18, 76.
dc.relation.referencesen5. HawkinsM., Lewis J., Expert Opin. DrugMetab. Toxicol., 2012, 8, 1521. https://doi.org/10.1517/17425255.2012.724060
dc.relation.referencesen6. Southworth H., Statist. Med., 2014, 33, 2914. https://doi.org/10.1002/sim.6142
dc.relation.referencesen7. Fontana R., Gastroenterology, 2014, 146, 914. https://doi.org/10.1053/j.gastro.2013.12.032
dc.relation.referencesen8. Van Ryn J., Stangier J., Haertter S. et al., Thromb. Haemost., 2010, 103, 1116. https://doi.org/10.1160/TH09-11-0758
dc.relation.referencesen9. Clement B., Kotthaus J., Kotthaus J., Schade D., Pat. EP 2550966 A1 20130130, Publ. Jan. 30, 2013.
dc.relation.referencesen10. Hall E., Kerrigan J., Ramachandran K. et al., Antimicrob. Agents Chemother. 1998, 42, 666. https://doi.org/10.1128/AAC.42.3.666
dc.relation.referencesen11. Schade D., Kotthaus J., Riebling L. et al., J. Med. Chem. 2014, 57, 759. https://doi.org/10.1021/jm401492x
dc.relation.referencesen12. Sperl S., BurgleM., Schmalix W. et al., Pat. US 20060142305 A1 20060629, Publ. June 29, 2006.
dc.relation.referencesen13. ClinicalTrials.gov. http://clinicaltrials.gov/ct2/show/NCT01069965
dc.relation.referencesen14. Frank P., Novak R., Biochem. Pharmacol., 1985, 34, 3609. https://doi.org/10.1016/0006-2952(85)90744-0
dc.relation.referencesen15. Gan K., Teng C., Lin H. et al., Biol. Pharm. Bull., 2008, 31, 1547. https://doi.org/10.1248/bpb.31.1547
dc.relation.referencesen16. Halenova T., Nikolaeva I., Stasevych M. et al., Res. J. Pharm. Biol. Chem. Sci., 2017, 8, 1626.
dc.relation.referencesen17. Zvarych V., Stasevych M., Lunin V. et al.:Monatsh. Chem., 2016, 147, 2093. https://doi.org/10.1007/s00706-016-1839-y
dc.relation.referencesen18. Stasevych M., Zvarych V., Lunin V. et al.:Monatsh. Chem., 2018, 149, 1111. https://doi.org/10.1007/s00706-018-2157-3
dc.relation.referencesen19. Zvarich V., StasevichM., Stanko O. et al., Pharm. Chem. J., 2014, 48, 584. https://doi.org/10.1007/s11094-014-1154-z
dc.relation.referencesen20. Stasevych M., Zvarych V., Lunin V. et al., Indian J. Pharm. Sci., 2015, 77, 634. https://doi.org/10.4103/0250-474X.169062
dc.relation.referencesen21. Stasevych M., Zvarych V., Lunin V. et al., SAR & QSAR in Environ. Res., 2017, 28, 355. https://doi.org/10.1080/1062936X.2017.1323796
dc.relation.referencesen22. Stasevych M., Zvarych V., Musyanovych R. et al., Chem. Chem. Technol., 2014, 8, 135. https://doi.org/10.23939/chcht08.02.135
dc.relation.referencesen23. Stasevych M., Zvarych V., Lunin V. et al., Chem. Chem. Technol., 2017, 11, 1. https://doi.org/10.23939/chcht11.01.001
dc.relation.referencesen24. Stasevych M., Zvarych V., Khomyak S. et al., Chem. Chem. Technol., 2018, 12, 300. https://doi.org/10.23939/chcht12.03.300
dc.relation.referencesen25. Stasevych M., Zvarych V., Lunin V. et al., Rus. J. Org. Chem., 2017, 53, 468. https://doi.org/10.1134/S1070428017030277
dc.relation.referencesen26. Stasevych M., Zvarych V., Lunin V. et al., Chem. Heterocycl. Compd., 2017, 53, 942. https://doi.org/10.1007/s10593-017-2148-z
dc.relation.referencesen27. Gaussian 09, Revision B.01, FrischM.J., Trucks G.W., Schlegel H.B. et al., Gaussian, Inc., Wallingford CT, 2009.
dc.relation.referencesen28. Exner O., Motekov N., Collect. Czech. Chem. Commun. 1986, 51, 1444. https://doi.org/10.1135/cccc19861444
dc.relation.referencesen29. Exner O., Collect. Czech. Chem. Commun., 1965, 30, 652. https://doi.org/10.1135/cccc19650652
dc.relation.referencesen30. Exner O., Motekov N., Collect. Czech. Chem. Commun., 1978, 43, 2740. https://doi.org/10.1135/cccc19782740
dc.relation.referencesen31. Tinant B., Dupont-Fenfau J., Declercq J.-P. et al., Collect. Czech. Chem. Commun., 1989, 54, 3245. https://doi.org/10.1135/cccc19893245
dc.relation.referencesen32. Srivastava R., PereiraM., FaustinoW. et al.:Monatsh. Chem, 2009, 140, 1319. https://doi.org/10.1007/s00706-009-0186-7
dc.relation.referencesen33. Vörös A., Mucsi Z., Baán Z. et al., Org. Biomol. Chem., 2014, 12, 8036. https://doi.org/10.1039/P.4OB00854E
dc.relation.referencesen34. Rosenberg S., Silver S., Sayer J. et al., J. Am. Chem. Soc., 1974, 96, 7986. https://doi.org/10.1021/ja00833a026
dc.relation.referencesen35. Heckendorn R., Bull. Soc. Chin. Belg. 1986, 95, 921. https://doi.org/10.1002/bscb.19860951101
dc.relation.referencesen36. Novikov A., Bolotin D., J. Phys. Org. Chem., 2017, e3772. https://doi.org/10.1002/poc.3772
dc.relation.referencesen37. Bolotin D., Bokach N., Kukushkin V., Coord. Chem. Rev., 2016, 313, 62. https://doi.org/10.1016/j.ccr.2015.10.005
dc.relation.referencesen38. Tavakol H., Arshadi S., J. Mol. Model., 2009, 15, 807. https://doi.org/10.1007/s00894-008-0435-4
dc.relation.referencesen39. Su X., Aprahamian I., Org. Lett., 2011, 13, 30. https://doi.org/10.1021/ol102422h
dc.relation.referencesen40. Johnson J., Carvallo C., Dolliver D. et al., Aust. J. Chem., 2007, 60, 685. https://doi.org/10.1071/CH07157
dc.relation.urihttps://doi.org/10.2174/138161208784139675
dc.relation.urihttps://doi.org/10.1517/17425255.2012.724060
dc.relation.urihttps://doi.org/10.1002/sim.6142
dc.relation.urihttps://doi.org/10.1053/j.gastro.2013.12.032
dc.relation.urihttps://doi.org/10.1160/TH09-11-0758
dc.relation.urihttps://doi.org/10.1128/AAC.42.3.666
dc.relation.urihttps://doi.org/10.1021/jm401492x
dc.relation.urihttp://clinicaltrials.gov/ct2/show/NCT01069965
dc.relation.urihttps://doi.org/10.1016/0006-2952(85)90744-0
dc.relation.urihttps://doi.org/10.1248/bpb.31.1547
dc.relation.urihttps://doi.org/10.1007/s00706-016-1839-y
dc.relation.urihttps://doi.org/10.1007/s00706-018-2157-3
dc.relation.urihttps://doi.org/10.1007/s11094-014-1154-z
dc.relation.urihttps://doi.org/10.4103/0250-474X.169062
dc.relation.urihttps://doi.org/10.1080/1062936X.2017.1323796
dc.relation.urihttps://doi.org/10.23939/chcht08.02.135
dc.relation.urihttps://doi.org/10.23939/chcht11.01.001
dc.relation.urihttps://doi.org/10.23939/chcht12.03.300
dc.relation.urihttps://doi.org/10.1134/S1070428017030277
dc.relation.urihttps://doi.org/10.1007/s10593-017-2148-z
dc.relation.urihttps://doi.org/10.1135/cccc19861444
dc.relation.urihttps://doi.org/10.1135/cccc19650652
dc.relation.urihttps://doi.org/10.1135/cccc19782740
dc.relation.urihttps://doi.org/10.1135/cccc19893245
dc.relation.urihttps://doi.org/10.1007/s00706-009-0186-7
dc.relation.urihttps://doi.org/10.1039/C4OB00854E
dc.relation.urihttps://doi.org/10.1021/ja00833a026
dc.relation.urihttps://doi.org/10.1002/bscb.19860951101
dc.relation.urihttps://doi.org/10.1002/poc.3772
dc.relation.urihttps://doi.org/10.1016/j.ccr.2015.10.005
dc.relation.urihttps://doi.org/10.1007/s00894-008-0435-4
dc.relation.urihttps://doi.org/10.1021/ol102422h
dc.relation.urihttps://doi.org/10.1071/CH07157
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Stasevych M., Zvarych V., Novikov V., Vovk M., 2019
dc.subject9
dc.subject10-діоксоантраценілгідразони
dc.subjectамідоксими
dc.subjectгеометрична ізомерія
dc.subjectDFT-розрахунки
dc.subjectМ06-2Х/6-311++G(d
dc.subjectp)
dc.subject9
dc.subject10-dioxoanthracenyl hydrazones
dc.subjectamidoximes
dc.subjectgeometric isomerism
dc.subjectDFT calculations
dc.subjectМ06-2Х/6-311++G(d
dc.subjectp)
dc.titleAmidoxime-Functionalized (9,10-Dioxoantracen-1-yl)hydrazones
dc.title.alternativeАмідоксим-функціоналізовані (9,10-діоксоантрацен-1-іл)гідразони
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v13n4_Stasevych_M-Amidoxime_Functionalized_417-423.pdf
Size:
532.77 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v13n4_Stasevych_M-Amidoxime_Functionalized_417-423__COVER.png
Size:
538.6 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.99 KB
Format:
Plain Text
Description: