Kinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde

dc.citation.epage346
dc.citation.issue2
dc.citation.spage339
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationDanylo Halytsky Lviv National Medical University
dc.contributor.authorGunka, Volodymyr
dc.contributor.authorDemchuk, Yuriy
dc.contributor.authorDrapak, Iryna
dc.contributor.authorKorchak, Bohdan
dc.contributor.authorBratychak, Michael
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:31Z
dc.date.available2024-02-12T08:30:31Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractОдержано фенолоформальдегідні смоли методом поліконденсації концентрованих фенолів з формальдегідом у присутності хлоридної кислоти. Концентрування фенолів здійснювали, обробляючи фенольну фракцію кам’яновугільної смоли водним розчином гідроксиду натрію з наступною нейтралізацією водорозчинних фенолятів хлоридною кислотою. Отримано кінетичні залежності виходу смоли та температури розм’якшення від тривалості процесу за 333, 353 та 373 K. Визначено порядок реакції та встановлено ефективну енергію активації цього процесу графічним методом. В інтервалі 333–373 K для реакцій поліконденсації отримано рівняння залежності виходу смоли від температури та тривалості процесу.
dc.description.abstractPhenol formaldehyde resins were obtained by polycondensation of concentrated phenols with formaldehyde in the presence of hydrochloric acid. Concentration of phenols is carried out by treating the phenolic fraction of coal tar with an aqueous solution of sodium hydroxide followed by neutralization of water-soluble phenolates with hydrochloric acid. The kinetic dependences of resin yield and softening temperature on the duration of the process at 333, 353, and 373 K were obtained. The order of the reaction was determined and the effective activation energy of this process was determined by a graphical method. In the interval 333-373 K for polycondensation reactions, the equation of the dependence of the resin yield on the temperature and duration of the process was obtained.
dc.format.extent339-346
dc.format.pages8
dc.identifier.citationKinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde / Volodymyr Gunka, Yuriy Demchuk, Iryna Drapak, Bohdan Korchak, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 339–346.
dc.identifier.citationenKinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde / Volodymyr Gunka, Yuriy Demchuk, Iryna Drapak, Bohdan Korchak, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 339–346.
dc.identifier.doidoi.org/10.23939/chcht17.02.339
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61237
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Smith, A. Verfahren zur Herstellung eines Ersatzmaterials für Ebonit, Holz u. dgl. DE 112685, October 10, 1899.
dc.relation.references[2] Baekeland, L.H. Method of making insoluble products of phenol and formaldehyde. US 942699, December 7, 1909.
dc.relation.references[3] Burkhart, T.; Oberressl, P.; Oldring, P.K.T. The chemistry and application of phenolic resins or phenolplasts; John Wiley & Sons, 1998.
dc.relation.references[4] Xu, Y.; Guo, L.; Zhang, H.; Zhai, H.; Ren, H. Research Status, Industrial Application Demand and Prospects of Phenolic Resin. RSC Adv. 2019, 9, 28924-28935. https://doi.org/10.1039/C9RA06487G
dc.relation.references[5] Moshchynskaia, N.K. Polymernye materialy na osnove aro-maticheskikh uhlevodorodov i formaldehida; Tekhnika: Kyiv, 1970.
dc.relation.references[6] Wegler, R. Beitrag zur Phenolharz-Analyse. Angew. Chemie A1948, 60, 88-95.
dc.relation.references[7] Verdot, J.A.; Rayan, P.W. Encyclopedia of polymer science and technology, Vol. 7; 1967, pp539-557.
dc.relation.references[8] Hashimoto, K.; Osaki, H.; Uetani, Y. Positive resist composi-tion comprising a novolac resin made from a cycloalkyl substituted phenol. US 5792586, August 11, 1998.
dc.relation.references[9] Chauvin, B.M.; Durel, O. Process and composition for the use of substituted melamines as hardeners of novolac resins. US 5763558, June 9, 1998.
dc.relation.references[10] Gelling, P.J.; Hunt, J.E.B.; Marshman, J.D. Continuous production of phenol-formaldehyde resin and laminates produced therefrom. US 4413113, November 1, 1983.
dc.relation.references[11] Petersen, H.; Krause, H.-J.; Fischer, K.; Segnitz, A.; Zaun-brecher, H. Cocondensates based on phenol-butyraldehyde resins, their preparation and their use. US 4276209, June 30,1981.
dc.relation.references[12] Gerber, A.H. Phenol-novolacs with improved optical proper-ties. US 6316583, November 13, 2001.
dc.relation.references[13] Van Benthem, R.A.T.M. Process for the preparation of a hydroxy-aromatic resin; hydroxy-aromatic resin, and modification thereof. Patent WO/2007/140941, December 13,2007.
dc.relation.references[14] Zhao, Y.; Mao, X.; Li, W.; Gu, X.; Wang, G. Study on Ex-traction Phenol from Coal Tar with High Flux Centrifugal Extractor. Int. J. Coal Sci. Technol. 2017, 4, 333-341. https://doi.org/10.1007/s40789-017-0182-1
dc.relation.references[15] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.references[16] Jiao, T.; Zhuang, X.; He, H.; Li, C.; Chen, H.; Zhang, S. Separation of Phenolic Compounds from Coal Tar via Liquid–Liquid Extraction Using Amide Compounds. Ind. Eng. Chem. Res. 2015, 54, 2573-2579. https://doi.org/10.1021/ie504892g
dc.relation.references[17] Li, Y.; Luo, H. A.; Ai, Q.; You, K.; Zhao, F.; Xiao, W. Effi-cient Separation of Phenols from Coal Tar with Aqueous Solution of Amines by Liquid-Liquid Extraction. Chin. J. Chem. Eng. 2021, 35, 180-188. https://doi.org/10.1016/j.cjche.2021.01.008
dc.relation.references[18] Riccardi, C.C.; Aierbe, G.A.; Echeverria, J.M.; Mondragon, I. Modelling of Phenolic Resin Polymerisation. Polymer2002, 43, 1631-1639. https://doi.org/10.1016/S0032-3861(01)00736-4
dc.relation.references[19] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212-217. https://doi.org/10.23939/chcht13.02.212
dc.relation.references[20] Bratychak, M.M., Hetmanchuk, Yu.P. Khimichna tekhnolo-hiya syntezu vysokomolekularnykh spoluk;Publishing House of Lviv Polytechnic National University: Lviv, 2009.
dc.relation.references[21] Çubuk, M.; Gürü, M. M.; Çubuk, K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civil Eng.2014, 26, 04014015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
dc.relation.references[22] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol.2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
dc.relation.references[23] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng.2020, 100, 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.references[24] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des.2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.references[25] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.references[26] Bratychak, M.; Brzozowski, Z.; Bukowski, A.; Daniewska, I.; Florjanczyk, Z.; Listos, T.; Lukasik, L.; Maciejewski, M.; Makaruk, L.; Pron, A. et al. Cwiczenia laboratoryjne z chemii i technologii polimerow; OWPW: Warszawa, 1997.
dc.relation.references[27] Emanuel, N.M.; Knorre, D.G. Chemical Kinetics: Homogeneous Reactions, First ed.; Israel Program for Scientific Translations: Jerusalem, 1973.
dc.relation.references[28] Ginell, R.; Simha, R. On the Kinetics of Polymerization Reac-tions. II. Second and Combined First and Second Order Initiation Reactions. Mutual Stabilization of Growing Chains1. J. Am. Chem. Soc. 1943, 65, 715-727. https://doi.org/10.1021/ja01244a057
dc.relation.references[29] Yang, Y.; Muhich, C.L.; Green, M.D. Kinetics and Mechan-isms of Polycondensation Reactions between Aryl Halides and Bisphenol A. Polym. Chem. 2020, 11, 5078-5087. https://doi.org/10.1039/D0PY00740D
dc.relation.referencesen[1] Smith, A. Verfahren zur Herstellung eines Ersatzmaterials für Ebonit, Holz u. dgl. DE 112685, October 10, 1899.
dc.relation.referencesen[2] Baekeland, L.H. Method of making insoluble products of phenol and formaldehyde. US 942699, December 7, 1909.
dc.relation.referencesen[3] Burkhart, T.; Oberressl, P.; Oldring, P.K.T. The chemistry and application of phenolic resins or phenolplasts; John Wiley & Sons, 1998.
dc.relation.referencesen[4] Xu, Y.; Guo, L.; Zhang, H.; Zhai, H.; Ren, H. Research Status, Industrial Application Demand and Prospects of Phenolic Resin. RSC Adv. 2019, 9, 28924-28935. https://doi.org/10.1039/P.9RA06487G
dc.relation.referencesen[5] Moshchynskaia, N.K. Polymernye materialy na osnove aro-maticheskikh uhlevodorodov i formaldehida; Tekhnika: Kyiv, 1970.
dc.relation.referencesen[6] Wegler, R. Beitrag zur Phenolharz-Analyse. Angew. Chemie A1948, 60, 88-95.
dc.relation.referencesen[7] Verdot, J.A.; Rayan, P.W. Encyclopedia of polymer science and technology, Vol. 7; 1967, pp539-557.
dc.relation.referencesen[8] Hashimoto, K.; Osaki, H.; Uetani, Y. Positive resist composi-tion comprising a novolac resin made from a cycloalkyl substituted phenol. US 5792586, August 11, 1998.
dc.relation.referencesen[9] Chauvin, B.M.; Durel, O. Process and composition for the use of substituted melamines as hardeners of novolac resins. US 5763558, June 9, 1998.
dc.relation.referencesen[10] Gelling, P.J.; Hunt, J.E.B.; Marshman, J.D. Continuous production of phenol-formaldehyde resin and laminates produced therefrom. US 4413113, November 1, 1983.
dc.relation.referencesen[11] Petersen, H.; Krause, H.-J.; Fischer, K.; Segnitz, A.; Zaun-brecher, H. Cocondensates based on phenol-butyraldehyde resins, their preparation and their use. US 4276209, June 30,1981.
dc.relation.referencesen[12] Gerber, A.H. Phenol-novolacs with improved optical proper-ties. US 6316583, November 13, 2001.
dc.relation.referencesen[13] Van Benthem, R.A.T.M. Process for the preparation of a hydroxy-aromatic resin; hydroxy-aromatic resin, and modification thereof. Patent WO/2007/140941, December 13,2007.
dc.relation.referencesen[14] Zhao, Y.; Mao, X.; Li, W.; Gu, X.; Wang, G. Study on Ex-traction Phenol from Coal Tar with High Flux Centrifugal Extractor. Int. J. Coal Sci. Technol. 2017, 4, 333-341. https://doi.org/10.1007/s40789-017-0182-1
dc.relation.referencesen[15] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.referencesen[16] Jiao, T.; Zhuang, X.; He, H.; Li, C.; Chen, H.; Zhang, S. Separation of Phenolic Compounds from Coal Tar via Liquid–Liquid Extraction Using Amide Compounds. Ind. Eng. Chem. Res. 2015, 54, 2573-2579. https://doi.org/10.1021/ie504892g
dc.relation.referencesen[17] Li, Y.; Luo, H. A.; Ai, Q.; You, K.; Zhao, F.; Xiao, W. Effi-cient Separation of Phenols from Coal Tar with Aqueous Solution of Amines by Liquid-Liquid Extraction. Chin. J. Chem. Eng. 2021, 35, 180-188. https://doi.org/10.1016/j.cjche.2021.01.008
dc.relation.referencesen[18] Riccardi, C.C.; Aierbe, G.A.; Echeverria, J.M.; Mondragon, I. Modelling of Phenolic Resin Polymerisation. Polymer2002, 43, 1631-1639. https://doi.org/10.1016/S0032-3861(01)00736-4
dc.relation.referencesen[19] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212-217. https://doi.org/10.23939/chcht13.02.212
dc.relation.referencesen[20] Bratychak, M.M., Hetmanchuk, Yu.P. Khimichna tekhnolo-hiya syntezu vysokomolekularnykh spoluk;Publishing House of Lviv Polytechnic National University: Lviv, 2009.
dc.relation.referencesen[21] Çubuk, M.; Gürü, M. M.; Çubuk, K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civil Eng.2014, 26, 04014015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
dc.relation.referencesen[22] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol.2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
dc.relation.referencesen[23] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng.2020, 100, 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.referencesen[24] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des.2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.referencesen[25] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.referencesen[26] Bratychak, M.; Brzozowski, Z.; Bukowski, A.; Daniewska, I.; Florjanczyk, Z.; Listos, T.; Lukasik, L.; Maciejewski, M.; Makaruk, L.; Pron, A. et al. Cwiczenia laboratoryjne z chemii i technologii polimerow; OWPW: Warszawa, 1997.
dc.relation.referencesen[27] Emanuel, N.M.; Knorre, D.G. Chemical Kinetics: Homogeneous Reactions, First ed.; Israel Program for Scientific Translations: Jerusalem, 1973.
dc.relation.referencesen[28] Ginell, R.; Simha, R. On the Kinetics of Polymerization Reac-tions. II. Second and Combined First and Second Order Initiation Reactions. Mutual Stabilization of Growing Chains1. J. Am. Chem. Soc. 1943, 65, 715-727. https://doi.org/10.1021/ja01244a057
dc.relation.referencesen[29] Yang, Y.; Muhich, C.L.; Green, M.D. Kinetics and Mechan-isms of Polycondensation Reactions between Aryl Halides and Bisphenol A. Polym. Chem. 2020, 11, 5078-5087. https://doi.org/10.1039/D0PY00740D
dc.relation.urihttps://doi.org/10.1039/C9RA06487G
dc.relation.urihttps://doi.org/10.1007/s40789-017-0182-1
dc.relation.urihttps://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.urihttps://doi.org/10.1021/ie504892g
dc.relation.urihttps://doi.org/10.1016/j.cjche.2021.01.008
dc.relation.urihttps://doi.org/10.1016/S0032-3861(01)00736-4
dc.relation.urihttps://doi.org/10.23939/chcht13.02.212
dc.relation.urihttps://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
dc.relation.urihttps://doi.org/10.23939/chcht14.02.251
dc.relation.urihttps://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.urihttps://doi.org/10.1080/14680629.2020.1808518
dc.relation.urihttps://doi.org/10.1021/ja01244a057
dc.relation.urihttps://doi.org/10.1039/D0PY00740D
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Gunka V., Demchuk Yu., Drapak I., Korchak B., Bratychak M., 2023
dc.subjectфенолоформальдегідні смоли
dc.subjectноволак
dc.subjectхлоридна кислота
dc.subjectкінетика
dc.subjectphenol formaldehyde resins
dc.subjectnovolac
dc.subjecthydrochloric acid
dc.subjectkinetics
dc.titleKinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde
dc.title.alternativeКінетична модель процесу поліконденсації концентрованих фенолів кам’яновугільної смоли з формальдегідом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Gunka_V-Kinetic_Model_of_the_Process_339-346.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Gunka_V-Kinetic_Model_of_the_Process_339-346__COVER.png
Size:
1.3 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: