Method of integral equations in the polytropic theory of stars with axial rotation. II. Polytropes with indices n > 1
dc.citation.epage | 485 | |
dc.citation.issue | 3 | |
dc.citation.spage | 474 | |
dc.contributor.affiliation | Львівський національний університет ім. Івана Франка | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Ваврух, М. В. | |
dc.contributor.author | Дзіковський, Д. В. | |
dc.contributor.author | Vavrukh, M. V. | |
dc.contributor.author | Dzikovskyi, D. V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-10-25T07:19:06Z | |
dc.date.available | 2023-10-25T07:19:06Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | Запропоновано новий спосіб знаходження розв’язків нелінійних рівнянь рівноваги для обертових політроп, що грунтується на самоузгодженому описі внутрішньої області та периферії при використанні інтегральної форми рівнянь. Розраховано залежність геометричних параметрів, форми поверхні, маси, моменту інерції і сталих інтегрування від кутової швидкості для індексів n = 2.5 і n = 3. | |
dc.description.abstract | A new method for finding solutions of the nonlinear equilibrium equations for rotational polytropes was proposed, which is based on a self-consistent description of internal region and periphery using the integral form of equations. Dependencies of geometrical parameters, surface form, mass, moment of inertia and integration constants on angular velocity were calculated for indices n = 2.5 and n = 3. | |
dc.format.extent | 474-485 | |
dc.format.pages | 12 | |
dc.identifier.citation | Vavrukh M. V. Method of integral equations in the polytropic theory of stars with axial rotation. II. Polytropes with indices n > 1 / M. V. Vavrukh, D. V. Dzikovskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 474–485. | |
dc.identifier.citationen | Vavrukh M. V. Method of integral equations in the polytropic theory of stars with axial rotation. II. Polytropes with indices n > 1 / M. V. Vavrukh, D. V. Dzikovskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 474–485. | |
dc.identifier.doi | doi.org/10.23939/mmc2021.03.474 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60401 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (8), 2021 | |
dc.relation.references | [1] Skulskyy M. Yu., Vavrukh M. V., Smerechynskyi S. V. X-ray binary Beta Lyrae and its donor component structure. IAU Symposium. 346, 139–142 (2019). | |
dc.relation.references | [2] Vavrukh M. V., Dzikovskyi D. V. Method of integral equations in the polytropic theory of stars with axial rotation. I. Polytropes n = 0 and n = 1. Mathematical Modeling and Computing. 8 (2), 338–358 (2021). | |
dc.relation.references | [3] Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V., Stelmakh O. M. The self-consistent description of stellar equilibrium with axial rotation. Mathematical Modeling and Computing. 6 (2), 153–172 (2019). | |
dc.relation.references | [4] Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V. New approach in the theory of stellar equilibrium with axial rotation. Journal of Physical Studies. 24 (3), 3902-1–3902-20 (2020). | |
dc.relation.references | [5] Vavrukh M. V., Dzikovskyi D. V. Exact solution for the rotating polytropes with index unity, its approximations and some applications. Contrib. Astron. Obs. Skalnat´e Pleso. 50 (4), 748–771 (2020). | |
dc.relation.references | [6] Chandrasekhar S. The Equilibrium of Distorted Polytropes: (I). The Rotational Problem. MNRAS. 93 (5), 390–406 (1933). | |
dc.relation.references | [7] James R. A. The Structure and Stability of Rotating Gas Masses. Astrophys. Journ. 140, 552–582 (1964). | |
dc.relation.references | [8] Kong D., Zhang K., Schubert G. An exact solution for arbitrarily rotating gaseous polytropes with index unity. MNRAS. 448 (1), 456–463 (2015). | |
dc.relation.references | [9] Knopik J., Mach P., Odrzywo lek A. The shape of a rapidly rotating polytrope with index unity. MNRAS. 467 (4), 4965–4969 (2017). | |
dc.relation.references | [10] Shapiro S. L., Teukolsky S. A. Black Holes, White Dwarfs and Neutron Stars. Cornell University, Ithaca, New York (1983). | |
dc.relation.references | [11] Monaghan J. J., Roxburgh I. W. The Structure of Rapidly Rotating Polytropes. MNRAS. 131 (1), 13–22 (1965). | |
dc.relation.references | [12] Milne E. A. The equilibrium of a rotating star. MNRAS. 83 (3), 118–147 (1923). | |
dc.relation.referencesen | [1] Skulskyy M. Yu., Vavrukh M. V., Smerechynskyi S. V. X-ray binary Beta Lyrae and its donor component structure. IAU Symposium. 346, 139–142 (2019). | |
dc.relation.referencesen | [2] Vavrukh M. V., Dzikovskyi D. V. Method of integral equations in the polytropic theory of stars with axial rotation. I. Polytropes n = 0 and n = 1. Mathematical Modeling and Computing. 8 (2), 338–358 (2021). | |
dc.relation.referencesen | [3] Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V., Stelmakh O. M. The self-consistent description of stellar equilibrium with axial rotation. Mathematical Modeling and Computing. 6 (2), 153–172 (2019). | |
dc.relation.referencesen | [4] Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V. New approach in the theory of stellar equilibrium with axial rotation. Journal of Physical Studies. 24 (3), 3902-1–3902-20 (2020). | |
dc.relation.referencesen | [5] Vavrukh M. V., Dzikovskyi D. V. Exact solution for the rotating polytropes with index unity, its approximations and some applications. Contrib. Astron. Obs. Skalnat´e Pleso. 50 (4), 748–771 (2020). | |
dc.relation.referencesen | [6] Chandrasekhar S. The Equilibrium of Distorted Polytropes: (I). The Rotational Problem. MNRAS. 93 (5), 390–406 (1933). | |
dc.relation.referencesen | [7] James R. A. The Structure and Stability of Rotating Gas Masses. Astrophys. Journ. 140, 552–582 (1964). | |
dc.relation.referencesen | [8] Kong D., Zhang K., Schubert G. An exact solution for arbitrarily rotating gaseous polytropes with index unity. MNRAS. 448 (1), 456–463 (2015). | |
dc.relation.referencesen | [9] Knopik J., Mach P., Odrzywo lek A. The shape of a rapidly rotating polytrope with index unity. MNRAS. 467 (4), 4965–4969 (2017). | |
dc.relation.referencesen | [10] Shapiro S. L., Teukolsky S. A. Black Holes, White Dwarfs and Neutron Stars. Cornell University, Ithaca, New York (1983). | |
dc.relation.referencesen | [11] Monaghan J. J., Roxburgh I. W. The Structure of Rapidly Rotating Polytropes. MNRAS. 131 (1), 13–22 (1965). | |
dc.relation.referencesen | [12] Milne E. A. The equilibrium of a rotating star. MNRAS. 83 (3), 118–147 (1923). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | зорі-політропи | |
dc.subject | неоднорідні еліпсоїди | |
dc.subject | осьове обертання | |
dc.subject | рівняння механічної рівноваги | |
dc.subject | стабільність зір | |
dc.subject | polytropic stars | |
dc.subject | heterogeneous ellipsoids | |
dc.subject | axial rotation | |
dc.subject | mechanical equilibrium equation | |
dc.subject | stability of stars | |
dc.title | Method of integral equations in the polytropic theory of stars with axial rotation. II. Polytropes with indices n > 1 | |
dc.title.alternative | Метод інтегральних рівнянь у політропній теорії зір з осьовим обертанням. II. Політропи з індексами n > 1 | |
dc.type | Article |
Files
License bundle
1 - 1 of 1