Method of integral equations in the polytropic theory of stars with axial rotation. II. Polytropes with indices n > 1

dc.citation.epage485
dc.citation.issue3
dc.citation.spage474
dc.contributor.affiliationЛьвівський національний університет ім. Івана Франка
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorВаврух, М. В.
dc.contributor.authorДзіковський, Д. В.
dc.contributor.authorVavrukh, M. V.
dc.contributor.authorDzikovskyi, D. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-25T07:19:06Z
dc.date.available2023-10-25T07:19:06Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractЗапропоновано новий спосіб знаходження розв’язків нелінійних рівнянь рівноваги для обертових політроп, що грунтується на самоузгодженому описі внутрішньої області та периферії при використанні інтегральної форми рівнянь. Розраховано залежність геометричних параметрів, форми поверхні, маси, моменту інерції і сталих інтегрування від кутової швидкості для індексів n = 2.5 і n = 3.
dc.description.abstractA new method for finding solutions of the nonlinear equilibrium equations for rotational polytropes was proposed, which is based on a self-consistent description of internal region and periphery using the integral form of equations. Dependencies of geometrical parameters, surface form, mass, moment of inertia and integration constants on angular velocity were calculated for indices n = 2.5 and n = 3.
dc.format.extent474-485
dc.format.pages12
dc.identifier.citationVavrukh M. V. Method of integral equations in the polytropic theory of stars with axial rotation. II. Polytropes with indices n > 1 / M. V. Vavrukh, D. V. Dzikovskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 474–485.
dc.identifier.citationenVavrukh M. V. Method of integral equations in the polytropic theory of stars with axial rotation. II. Polytropes with indices n > 1 / M. V. Vavrukh, D. V. Dzikovskyi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 474–485.
dc.identifier.doidoi.org/10.23939/mmc2021.03.474
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60401
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 3 (8), 2021
dc.relation.references[1] Skulskyy M. Yu., Vavrukh M. V., Smerechynskyi S. V. X-ray binary Beta Lyrae and its donor component structure. IAU Symposium. 346, 139–142 (2019).
dc.relation.references[2] Vavrukh M. V., Dzikovskyi D. V. Method of integral equations in the polytropic theory of stars with axial rotation. I. Polytropes n = 0 and n = 1. Mathematical Modeling and Computing. 8 (2), 338–358 (2021).
dc.relation.references[3] Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V., Stelmakh O. M. The self-consistent description of stellar equilibrium with axial rotation. Mathematical Modeling and Computing. 6 (2), 153–172 (2019).
dc.relation.references[4] Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V. New approach in the theory of stellar equilibrium with axial rotation. Journal of Physical Studies. 24 (3), 3902-1–3902-20 (2020).
dc.relation.references[5] Vavrukh M. V., Dzikovskyi D. V. Exact solution for the rotating polytropes with index unity, its approximations and some applications. Contrib. Astron. Obs. Skalnat´e Pleso. 50 (4), 748–771 (2020).
dc.relation.references[6] Chandrasekhar S. The Equilibrium of Distorted Polytropes: (I). The Rotational Problem. MNRAS. 93 (5), 390–406 (1933).
dc.relation.references[7] James R. A. The Structure and Stability of Rotating Gas Masses. Astrophys. Journ. 140, 552–582 (1964).
dc.relation.references[8] Kong D., Zhang K., Schubert G. An exact solution for arbitrarily rotating gaseous polytropes with index unity. MNRAS. 448 (1), 456–463 (2015).
dc.relation.references[9] Knopik J., Mach P., Odrzywo lek A. The shape of a rapidly rotating polytrope with index unity. MNRAS. 467 (4), 4965–4969 (2017).
dc.relation.references[10] Shapiro S. L., Teukolsky S. A. Black Holes, White Dwarfs and Neutron Stars. Cornell University, Ithaca, New York (1983).
dc.relation.references[11] Monaghan J. J., Roxburgh I. W. The Structure of Rapidly Rotating Polytropes. MNRAS. 131 (1), 13–22 (1965).
dc.relation.references[12] Milne E. A. The equilibrium of a rotating star. MNRAS. 83 (3), 118–147 (1923).
dc.relation.referencesen[1] Skulskyy M. Yu., Vavrukh M. V., Smerechynskyi S. V. X-ray binary Beta Lyrae and its donor component structure. IAU Symposium. 346, 139–142 (2019).
dc.relation.referencesen[2] Vavrukh M. V., Dzikovskyi D. V. Method of integral equations in the polytropic theory of stars with axial rotation. I. Polytropes n = 0 and n = 1. Mathematical Modeling and Computing. 8 (2), 338–358 (2021).
dc.relation.referencesen[3] Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V., Stelmakh O. M. The self-consistent description of stellar equilibrium with axial rotation. Mathematical Modeling and Computing. 6 (2), 153–172 (2019).
dc.relation.referencesen[4] Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V. New approach in the theory of stellar equilibrium with axial rotation. Journal of Physical Studies. 24 (3), 3902-1–3902-20 (2020).
dc.relation.referencesen[5] Vavrukh M. V., Dzikovskyi D. V. Exact solution for the rotating polytropes with index unity, its approximations and some applications. Contrib. Astron. Obs. Skalnat´e Pleso. 50 (4), 748–771 (2020).
dc.relation.referencesen[6] Chandrasekhar S. The Equilibrium of Distorted Polytropes: (I). The Rotational Problem. MNRAS. 93 (5), 390–406 (1933).
dc.relation.referencesen[7] James R. A. The Structure and Stability of Rotating Gas Masses. Astrophys. Journ. 140, 552–582 (1964).
dc.relation.referencesen[8] Kong D., Zhang K., Schubert G. An exact solution for arbitrarily rotating gaseous polytropes with index unity. MNRAS. 448 (1), 456–463 (2015).
dc.relation.referencesen[9] Knopik J., Mach P., Odrzywo lek A. The shape of a rapidly rotating polytrope with index unity. MNRAS. 467 (4), 4965–4969 (2017).
dc.relation.referencesen[10] Shapiro S. L., Teukolsky S. A. Black Holes, White Dwarfs and Neutron Stars. Cornell University, Ithaca, New York (1983).
dc.relation.referencesen[11] Monaghan J. J., Roxburgh I. W. The Structure of Rapidly Rotating Polytropes. MNRAS. 131 (1), 13–22 (1965).
dc.relation.referencesen[12] Milne E. A. The equilibrium of a rotating star. MNRAS. 83 (3), 118–147 (1923).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectзорі-політропи
dc.subjectнеоднорідні еліпсоїди
dc.subjectосьове обертання
dc.subjectрівняння механічної рівноваги
dc.subjectстабільність зір
dc.subjectpolytropic stars
dc.subjectheterogeneous ellipsoids
dc.subjectaxial rotation
dc.subjectmechanical equilibrium equation
dc.subjectstability of stars
dc.titleMethod of integral equations in the polytropic theory of stars with axial rotation. II. Polytropes with indices n > 1
dc.title.alternativeМетод інтегральних рівнянь у політропній теорії зір з осьовим обертанням. II. Політропи з індексами n > 1
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n3_Vavrukh_M_V-Method_of_integral_equations_474-485.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n3_Vavrukh_M_V-Method_of_integral_equations_474-485__COVER.png
Size:
432.42 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: