Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies

dc.citation.epage406
dc.citation.issue3
dc.citation.spage399
dc.contributor.affiliationUniversidade Federal do Rio de Janeiro
dc.contributor.affiliationInstituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ)
dc.contributor.authorSilva, Carla
dc.contributor.authorRocha, Paulo
dc.contributor.authorAversa, Thiago
dc.contributor.authorLucas, Elizabete
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T13:09:26Z
dc.date.available2020-03-02T13:09:26Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractта дивінілбензенова (ДВБ) смоли для адсорбції нафти в штучному середовищі нафта-вода. Дослідження проводили для двох процесів: (i) безперервний процес для оцінювання кількості води з нафтою, яку можна елюювати до досягнення межі насичення смол; і (ii) періодичний процес для одержання кінетичної та ізотермічної моделі двох смол., Встановлено, що для обох смол результати найкраще відповідають ізотермі Фройндліха та кінетичній моделі псевдодругого порядку. Знайдені значення низької енергії активації свідчать про фізичну адсорбцію між смолами та нафтою. Показано, що незважаючи на непогану ефективність ДВБ смоли щодо видалення нафти, її можна замінити промисловою смолою MMA-ДВБ, завдяки таким перевагам як менша вартість, токсичність та легкість регенерації.
dc.description.abstractIn this study, the performance of two polymer resins was evaluated, one composed of methyl methacrylate-divinylbenzene (MMA-DVB) and the other of only divinylbenzene (DVB), for adsorption of oil in synthetic oily wastewater. The tests were carried out using two processes: (i) continuous flow, to assess the quantity of oily water that can be eluted until reaching the saturation point of resins; and (ii) batch, to obtain information about the best-fitting kinetic and isotherm models for the two resins. The results for both resins showed better fits to the Freundlich isotherm model and the pseudo-second-order kinetic model. The low activation energy values found suggest physical adsorption between the resins and oil. Although DVB resin has presented slightly better oil removal efficiency than the MMA-DVB one, the results showed that DVB resin can be industrially replaced by MMA-DVB resin, due to the latter advantages: lower cost, lower toxicity and easy regeneration, as indicated by the kinetic and isothermstudies.
dc.format.extent399-406
dc.format.pages8
dc.identifier.citationRemoval of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies / Carla Silva, Paulo Rocha, Thiago Aversa, Elizabete Lucas // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 399–406.
dc.identifier.citationenRemoval of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies / Carla Silva, Paulo Rocha, Thiago Aversa, Elizabete Lucas // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 399–406.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46486
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (13), 2019
dc.relation.references1. StephensonM.: Soc. Pet. Eng., 1992, 44, 548.
dc.relation.references2. Fakhru’l-Razia A., Pendashteha A., Abdullaha L. et al.: J. Hazard. Mat., 2009, 170, 530. https://doi.org/10.1016/j.jhazmat.2009.05.044
dc.relation.references3. McCormack P., Jones P., HetheridgeM., Rowland S.:Wat. Res., 2001, 35, 3567. https://doi.org/10.1016/S0043-1354(01)00070-7
dc.relation.references4. Lucas E., Mansur C., Spinelli L., Queirós Y.: Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21
dc.relation.references5. Srinivasan A., Viraraghavan T.: Bioresour. Technol., 2010, 101, 6594. https://doi.org/10.1016/j.biortech.2010.03.079
dc.relation.references6. Lucas E., Spinelli L., Khalil C.: Polymers Applications in Petroleum Production [in:]Mark H. (Ed.), Encyclopedia of Polymer Science and Technology. JohnWiley & Sons, Inc., 2015. https://doi.org/10.1002/0471440264.pst641
dc.relation.references7. Rajakovic V., Aleksic G., RadeticM., Rajakovic L.: J. Hazard. Mat., 2007, 143, 494. https://doi.org/10.1016/j.jhazmat.2006.09.060
dc.relation.references8. Barrufet M., Burnett D.,Mareth D.: SPE Annual Techn. Conf. and Exhib., Dallas 2005, 9.
dc.relation.references9. Tao F., Hobbs R., Sides J. et al.: SPE/EPA Exploration and Production Environmental Conference, San Antonio, 1993, 3.
dc.relation.references10. Souza A., Furtado C.: Bol. Tec. Prod. Petrol. Rio de Janeiro, 2006, 1, 215.
dc.relation.references11. Robinson D.: Filtration + Separation, 2013, 50, 38. https://doi.org/10.1016/S0015-1882(13)70168-X
dc.relation.references12. BataeeM., Irawan S., Ridha S. et al.: SPE Journal, 2017, 22, 1. https://doi.org/10.2118/183627-PA
dc.relation.references13. CONAMA (Conselho Nacional doMeio Ambiente) – Resolution number 393, 2007.
dc.relation.references14. Den BroekW., Plat R., Der ZandeM.: SPE Int. Oil and Gas Conf. and Exhib. in China, Beijing 1998.
dc.relation.references15. Munirasu S., HaijaM., Banat F.: Proc. Saf. Environ. Prot., 2016, 100, 183. https://doi.org/10.1016/j.psep.2016.01.010
dc.relation.references16. Masqué N., GaliàM., Borrull F.: Chromatographia, 1999, 50, 21. https://doi.org/10.1007/BF02493612
dc.relation.references17. Sokker H., El-Sawyb N., HassanM., El-Anadoul B.: J. Hazard. Mat., 2011, 190, 359. https://doi.org/10.1016/j.jhazmat.2011.03.055
dc.relation.references18. Okiel K., El-SayedM., El-KadyM.: Egypt. J. Pet., 2011, 20, 9.
dc.relation.references19. Igunnu E., Chen G.: Int. J. Low Carbon Technol., 2014, 9, 157. https://doi.org/10.1093/ijlct/cts049
dc.relation.references20. Li H., Jiao Y., XuM. et al.: Polymer, 2004, 45, 181. https://doi.org/10.1016/j.polymer.2003.11.013
dc.relation.references21. Huang J., Huang K., Wang A., Yang Q.: J. Colloid Interf. Sci., 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006
dc.relation.references22. Fontanals N., GaliáM., Cormack P. et al.: J. Chromatogr. A, 2005, 1075, 51. https://doi.org/10.1016/j.chroma.2005.04.010
dc.relation.references23. Dumont P., Fritz J.: J. Chromatogr. A, 1995, 691, 123. https://doi.org/10.1016/0021-9673(94)00766-3
dc.relation.references24. Nash D., McCreath G., Chase H.: J. Chromatogr. A, 1997, 758, 53. https://doi.org/10.1016/S0021-9673(96)00710-8
dc.relation.references25. Iayadene F., Guettaf H., Bencheikh Z. et al.: Eur. Polym. J., 1998, 34, 219. https://doi.org/10.1016/S0014-3057(97)00099-2
dc.relation.references26. Bouvier E., Meirowitz R., McDonald P.: Pat. US 6254780. Publ. Jul. 3, 2001.
dc.relation.references27. Zhou Y., Chen L., Hu X., Lu J.: Ind. Eng. Chem. Res., 2009, 48, 1660. https://doi.org/10.1021/ie8012242
dc.relation.references28. Zhou Y., Tang X., Xiao-Men H. et al.: Sep. Pur. Technol., 2008, 63, 400. https://doi.org/10.1016/j.seppur.2008.06.002
dc.relation.references29. Kundu P., Mishra I.: Sep. Pur. Technol., 2013, 118, 519. https://doi.org/10.1016/j.seppur.2013.07.041
dc.relation.references30. ClarisseM., Queirós Y., Barbosa C. et al.: Chem. Chem. Technol., 2012, 6, 145.
dc.relation.references31. Aversa T., Queirós Y., Lucas E., Louvisse A.: Polímeros, 2014, 24, 45. https://doi.org/10.4322/polimeros.2013.048
dc.relation.references32. Silva C., Rocha Q., Rocha P. et al.: J. Environ. Manag., 2015, 57, 205. https://doi.org/10.1016/j.jenvman.2015.04.025
dc.relation.references33. Cardoso A., Lucas E., Barbosa C.: Polímeros, 2004, 14, 201. https://doi.org/10.1590/S0104-14282004000300017
dc.relation.references34. Queirós Y., ClarisseM., Oliveira R. et al.: Polímeros, 2006, 16, 224. https://doi.org/10.1590/S0104-14282006000300012
dc.relation.references35. Aversa T., Silva C., Rocha Q., Lucas E.: J. Environ. Sci. Health A, 2016, 51, 634. https://doi.org/10.1080/10934529.2016.1159872
dc.relation.references36. Tibbetts P., Buchanan I., Gawel L., Large R.: A Comprehensive Determination of ProducedWater Composition [in:] Ray J., Engelhardt F. (Eds.), ProducedWater: Technological/Environmental Issues and Solutions. Springer Science & BusinessMedia, New York 1992. https://doi.org/10.1007/978-1-4615-2902-6_9
dc.relation.references37. Galkin A.: J. Anal. Chem., 2004, 50, 1078.
dc.relation.references38. Rendell D.: Fluorescense and Phosforescence. JohnWiley& Sons, Bristol 1987.
dc.relation.references39. Adamson A.: Physical Chemistry of Surfaces. John Wiley& Sons, California 1990.
dc.relation.references40. Ho Y., McKay G.: Chem. Eng. Res. Design, 1998, 76, 332.
dc.relation.references41. Sho Y., Wase J. A. D., Forster F. C.: Environ. Technol., 1996, 17, 71. https://doi.org/10.1080/09593331708616362
dc.relation.references42. Smith F., Hashemi J.: Fundamentos de Engenharia e Ciência dos Materiais.McGraw Hill Brasil, Porto Alegre 2012.
dc.relation.references43. Huang J., Jin X., Mao J. et al.: J. Hazard. Mat., 2012, 217, 406. https://doi.org/10.1016/j.jhazmat.2012.03.053
dc.relation.references44. Cheng S., Tang H., Yan H.: J. Appl. Polym. Sci., 2006, 102, 4652. https://doi.org/10.1002/app.24702
dc.relation.references45. Drechny D., Trochimczuk A.: React. Funct. Polym., 2006, 66, 323. https://doi.org/10.1016/j.reactfunctpolym.2005.10.024
dc.relation.references46. Kennedy L., Vijaya J., Sekaran G., Kayalvizhi K.: J. Hazard. Mat., 2007, 149, 134. https://doi.org/10.1016/j.jhazmat.2007.03.061
dc.relation.references47. Teixeira V., Coutinho F., Gomes A.: Quim. Nova, 2004, 27, 754. https://doi.org/10.1590/S0100-40422004000500015
dc.relation.references48. Guimarães D., Leão V.: J. Hazard. Mat., 2014, 280, 209. https://doi.org/10.1016/j.jhazmat.2014.07.071
dc.relation.references49. Azizian S.: J. Colloid Interf. Sci., 2004, 276, 47. https://doi.org/10.1016/j.jcis.2004.03.048
dc.relation.references50. Plazinski W., Dziuba J., Rudzinski W.: Adsorption, 2013, 19, 1055. https://doi.org/10.1007/s10450-013-9529-0
dc.relation.referencesen1. StephensonM., Soc. Pet. Eng., 1992, 44, 548.
dc.relation.referencesen2. Fakhru’l-Razia A., Pendashteha A., Abdullaha L. et al., J. Hazard. Mat., 2009, 170, 530. https://doi.org/10.1016/j.jhazmat.2009.05.044
dc.relation.referencesen3. McCormack P., Jones P., HetheridgeM., Rowland S.:Wat. Res., 2001, 35, 3567. https://doi.org/10.1016/S0043-1354(01)00070-7
dc.relation.referencesen4. Lucas E., Mansur C., Spinelli L., Queirós Y., Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21
dc.relation.referencesen5. Srinivasan A., Viraraghavan T., Bioresour. Technol., 2010, 101, 6594. https://doi.org/10.1016/j.biortech.2010.03.079
dc.relation.referencesen6. Lucas E., Spinelli L., Khalil C., Polymers Applications in Petroleum Production [in:]Mark H. (Ed.), Encyclopedia of Polymer Science and Technology. JohnWiley & Sons, Inc., 2015. https://doi.org/10.1002/0471440264.pst641
dc.relation.referencesen7. Rajakovic V., Aleksic G., RadeticM., Rajakovic L., J. Hazard. Mat., 2007, 143, 494. https://doi.org/10.1016/j.jhazmat.2006.09.060
dc.relation.referencesen8. Barrufet M., Burnett D.,Mareth D., SPE Annual Techn. Conf. and Exhib., Dallas 2005, 9.
dc.relation.referencesen9. Tao F., Hobbs R., Sides J. et al., SPE/EPA Exploration and Production Environmental Conference, San Antonio, 1993, 3.
dc.relation.referencesen10. Souza A., Furtado C., Bol. Tec. Prod. Petrol. Rio de Janeiro, 2006, 1, 215.
dc.relation.referencesen11. Robinson D., Filtration + Separation, 2013, 50, 38. https://doi.org/10.1016/S0015-1882(13)70168-X
dc.relation.referencesen12. BataeeM., Irawan S., Ridha S. et al., SPE Journal, 2017, 22, 1. https://doi.org/10.2118/183627-PA
dc.relation.referencesen13. CONAMA (Conselho Nacional doMeio Ambiente) – Resolution number 393, 2007.
dc.relation.referencesen14. Den BroekW., Plat R., Der ZandeM., SPE Int. Oil and Gas Conf. and Exhib. in China, Beijing 1998.
dc.relation.referencesen15. Munirasu S., HaijaM., Banat F., Proc. Saf. Environ. Prot., 2016, 100, 183. https://doi.org/10.1016/j.psep.2016.01.010
dc.relation.referencesen16. Masqué N., GaliàM., Borrull F., Chromatographia, 1999, 50, 21. https://doi.org/10.1007/BF02493612
dc.relation.referencesen17. Sokker H., El-Sawyb N., HassanM., El-Anadoul B., J. Hazard. Mat., 2011, 190, 359. https://doi.org/10.1016/j.jhazmat.2011.03.055
dc.relation.referencesen18. Okiel K., El-SayedM., El-KadyM., Egypt. J. Pet., 2011, 20, 9.
dc.relation.referencesen19. Igunnu E., Chen G., Int. J. Low Carbon Technol., 2014, 9, 157. https://doi.org/10.1093/ijlct/cts049
dc.relation.referencesen20. Li H., Jiao Y., XuM. et al., Polymer, 2004, 45, 181. https://doi.org/10.1016/j.polymer.2003.11.013
dc.relation.referencesen21. Huang J., Huang K., Wang A., Yang Q., J. Colloid Interf. Sci., 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006
dc.relation.referencesen22. Fontanals N., GaliáM., Cormack P. et al., J. Chromatogr. A, 2005, 1075, 51. https://doi.org/10.1016/j.chroma.2005.04.010
dc.relation.referencesen23. Dumont P., Fritz J., J. Chromatogr. A, 1995, 691, 123. https://doi.org/10.1016/0021-9673(94)00766-3
dc.relation.referencesen24. Nash D., McCreath G., Chase H., J. Chromatogr. A, 1997, 758, 53. https://doi.org/10.1016/S0021-9673(96)00710-8
dc.relation.referencesen25. Iayadene F., Guettaf H., Bencheikh Z. et al., Eur. Polym. J., 1998, 34, 219. https://doi.org/10.1016/S0014-3057(97)00099-2
dc.relation.referencesen26. Bouvier E., Meirowitz R., McDonald P., Pat. US 6254780. Publ. Jul. 3, 2001.
dc.relation.referencesen27. Zhou Y., Chen L., Hu X., Lu J., Ind. Eng. Chem. Res., 2009, 48, 1660. https://doi.org/10.1021/ie8012242
dc.relation.referencesen28. Zhou Y., Tang X., Xiao-Men H. et al., Sep. Pur. Technol., 2008, 63, 400. https://doi.org/10.1016/j.seppur.2008.06.002
dc.relation.referencesen29. Kundu P., Mishra I., Sep. Pur. Technol., 2013, 118, 519. https://doi.org/10.1016/j.seppur.2013.07.041
dc.relation.referencesen30. ClarisseM., Queirós Y., Barbosa C. et al., Chem. Chem. Technol., 2012, 6, 145.
dc.relation.referencesen31. Aversa T., Queirós Y., Lucas E., Louvisse A., Polímeros, 2014, 24, 45. https://doi.org/10.4322/polimeros.2013.048
dc.relation.referencesen32. Silva C., Rocha Q., Rocha P. et al., J. Environ. Manag., 2015, 57, 205. https://doi.org/10.1016/j.jenvman.2015.04.025
dc.relation.referencesen33. Cardoso A., Lucas E., Barbosa C., Polímeros, 2004, 14, 201. https://doi.org/10.1590/S0104-14282004000300017
dc.relation.referencesen34. Queirós Y., ClarisseM., Oliveira R. et al., Polímeros, 2006, 16, 224. https://doi.org/10.1590/S0104-14282006000300012
dc.relation.referencesen35. Aversa T., Silva C., Rocha Q., Lucas E., J. Environ. Sci. Health A, 2016, 51, 634. https://doi.org/10.1080/10934529.2016.1159872
dc.relation.referencesen36. Tibbetts P., Buchanan I., Gawel L., Large R., A Comprehensive Determination of ProducedWater Composition [in:] Ray J., Engelhardt F. (Eds.), ProducedWater: Technological/Environmental Issues and Solutions. Springer Science & BusinessMedia, New York 1992. https://doi.org/10.1007/978-1-4615-2902-6_9
dc.relation.referencesen37. Galkin A., J. Anal. Chem., 2004, 50, 1078.
dc.relation.referencesen38. Rendell D., Fluorescense and Phosforescence. JohnWiley& Sons, Bristol 1987.
dc.relation.referencesen39. Adamson A., Physical Chemistry of Surfaces. John Wiley& Sons, California 1990.
dc.relation.referencesen40. Ho Y., McKay G., Chem. Eng. Res. Design, 1998, 76, 332.
dc.relation.referencesen41. Sho Y., Wase J. A. D., Forster F. C., Environ. Technol., 1996, 17, 71. https://doi.org/10.1080/09593331708616362
dc.relation.referencesen42. Smith F., Hashemi J., Fundamentos de Engenharia e Ciência dos Materiais.McGraw Hill Brasil, Porto Alegre 2012.
dc.relation.referencesen43. Huang J., Jin X., Mao J. et al., J. Hazard. Mat., 2012, 217, 406. https://doi.org/10.1016/j.jhazmat.2012.03.053
dc.relation.referencesen44. Cheng S., Tang H., Yan H., J. Appl. Polym. Sci., 2006, 102, 4652. https://doi.org/10.1002/app.24702
dc.relation.referencesen45. Drechny D., Trochimczuk A., React. Funct. Polym., 2006, 66, 323. https://doi.org/10.1016/j.reactfunctpolym.2005.10.024
dc.relation.referencesen46. Kennedy L., Vijaya J., Sekaran G., Kayalvizhi K., J. Hazard. Mat., 2007, 149, 134. https://doi.org/10.1016/j.jhazmat.2007.03.061
dc.relation.referencesen47. Teixeira V., Coutinho F., Gomes A., Quim. Nova, 2004, 27, 754. https://doi.org/10.1590/S0100-40422004000500015
dc.relation.referencesen48. Guimarães D., Leão V., J. Hazard. Mat., 2014, 280, 209. https://doi.org/10.1016/j.jhazmat.2014.07.071
dc.relation.referencesen49. Azizian S., J. Colloid Interf. Sci., 2004, 276, 47. https://doi.org/10.1016/j.jcis.2004.03.048
dc.relation.referencesen50. Plazinski W., Dziuba J., Rudzinski W., Adsorption, 2013, 19, 1055. https://doi.org/10.1007/s10450-013-9529-0
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2009.05.044
dc.relation.urihttps://doi.org/10.1016/S0043-1354(01)00070-7
dc.relation.urihttps://doi.org/10.1351/PAC-CON-08-07-21
dc.relation.urihttps://doi.org/10.1016/j.biortech.2010.03.079
dc.relation.urihttps://doi.org/10.1002/0471440264.pst641
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2006.09.060
dc.relation.urihttps://doi.org/10.1016/S0015-1882(13)70168-X
dc.relation.urihttps://doi.org/10.2118/183627-PA
dc.relation.urihttps://doi.org/10.1016/j.psep.2016.01.010
dc.relation.urihttps://doi.org/10.1007/BF02493612
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2011.03.055
dc.relation.urihttps://doi.org/10.1093/ijlct/cts049
dc.relation.urihttps://doi.org/10.1016/j.polymer.2003.11.013
dc.relation.urihttps://doi.org/10.1016/j.jcis.2008.09.006
dc.relation.urihttps://doi.org/10.1016/j.chroma.2005.04.010
dc.relation.urihttps://doi.org/10.1016/0021-9673(94)00766-3
dc.relation.urihttps://doi.org/10.1016/S0021-9673(96)00710-8
dc.relation.urihttps://doi.org/10.1016/S0014-3057(97)00099-2
dc.relation.urihttps://doi.org/10.1021/ie8012242
dc.relation.urihttps://doi.org/10.1016/j.seppur.2008.06.002
dc.relation.urihttps://doi.org/10.1016/j.seppur.2013.07.041
dc.relation.urihttps://doi.org/10.4322/polimeros.2013.048
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2015.04.025
dc.relation.urihttps://doi.org/10.1590/S0104-14282004000300017
dc.relation.urihttps://doi.org/10.1590/S0104-14282006000300012
dc.relation.urihttps://doi.org/10.1080/10934529.2016.1159872
dc.relation.urihttps://doi.org/10.1007/978-1-4615-2902-6_9
dc.relation.urihttps://doi.org/10.1080/09593331708616362
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2012.03.053
dc.relation.urihttps://doi.org/10.1002/app.24702
dc.relation.urihttps://doi.org/10.1016/j.reactfunctpolym.2005.10.024
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2007.03.061
dc.relation.urihttps://doi.org/10.1590/S0100-40422004000500015
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2014.07.071
dc.relation.urihttps://doi.org/10.1016/j.jcis.2004.03.048
dc.relation.urihttps://doi.org/10.1007/s10450-013-9529-0
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Silva C., Rocha P., Aversa T., Lucas E., 2019
dc.subjectоброблення нафтовмісної води
dc.subjectадсорбція
dc.subjectпористі полімерні смоли
dc.subjectізотерма
dc.subjectкінетична модель
dc.subjectoily water treatment
dc.subjectadsorption
dc.subjectporous polymer resins
dc.subjectisotherm model
dc.subjectkinetic model
dc.titleRemoval of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies
dc.title.alternativeВидалення нафти з водних систем полідивінілбензеновими та поліметилметакрилат-дивінілбензеновими смолами: ізотермальні та кінетичні дослідження
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v13n3_Silva_C-Removal_of_Petroleum_from_399-406.pdf
Size:
624 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v13n3_Silva_C-Removal_of_Petroleum_from_399-406__COVER.png
Size:
567.72 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.98 KB
Format:
Plain Text
Description: