Local manifolds for non-autonomous boundary Cauchy problems: existence and attractivity
dc.citation.epage | 693 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 678 | |
dc.contributor.affiliation | Університет Мухаммеда І | |
dc.contributor.affiliation | University Mohammed I | |
dc.contributor.author | Джерруді, А. | |
dc.contributor.author | Муссі, М. | |
dc.contributor.author | Jerroudi, A. | |
dc.contributor.author | Moussi, M. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:33:00Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | У цій роботі встановлено існування локальних стійких і локально нестійкихмноговидів для нелінійних крайових задач Коші. Крім того, отримані результати проілюстровано застосуванням до неавтономного рівняння Фішера–Колмогорова. | |
dc.description.abstract | In this work we establish the existence of local stable and local unstable manifolds for nonlinear boundary Cauchy problems. Moreover, we illustrate our results by an application to a non-autonomous Fisher–Kolmogorov equation. | |
dc.format.extent | 678-693 | |
dc.format.pages | 16 | |
dc.identifier.citation | Jerroudi A. Local manifolds for non-autonomous boundary Cauchy problems: existence and attractivity / A. Jerroudi, M. Moussi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 678–693. | |
dc.identifier.citationen | Jerroudi A. Local manifolds for non-autonomous boundary Cauchy problems: existence and attractivity / A. Jerroudi, M. Moussi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 3. — P. 678–693. | |
dc.identifier.doi | doi.org/10.23939/mmc2022.03.678 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63465 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 3 (9), 2022 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (9), 2022 | |
dc.relation.references | [1] Boulite S., Maniar L., Moussi M. Wellposedness and asymptotic behaviour of nonautonomous boundary Cauchy problems. Forum Mathematicum. 18 (4), 611–638 (2006). | |
dc.relation.references | [2] Doan T. S., Moussi M., Siegmund S. Integral Manifolds of Nonautonomous Boundary Cauchy Problems. Journal of Nonlinear Evolution Equations and Applications. 2012 (1), 1–15 (2012). | |
dc.relation.references | [3] Jerroudi A., Moussi M. Invariant centre manifolds of non-autonomous boundary Cauchy problems (under review). | |
dc.relation.references | [4] Moussi M. Pullback Attractors of Nonautonomous Boundary Cauchy Problems. Nonlinear Dynamics and Systems Theory. 14 (4), 383–394 (2014). | |
dc.relation.references | [5] Kellermann H. Linear evolution equations with time dependent domain. Semesterbericht Funktionalanalysis T¨ubingen, Wintersemester. 16–44 (1986–1987). | |
dc.relation.references | [6] Lan N. T. On non-autonomous functional differential equations. Journal of Mathematical Analysis and Applications. 239 (1), 158–174 (1999). | |
dc.relation.references | [7] Jerroudi A., Moussi M. Stability and local attractivity for nonautonomous boundary Cauchy problems. Boletim da Sociedade Paranaense de Matem´atica (in press). | |
dc.relation.references | [8] Minh N. V., R¨abiger F., Schnaubelt R. Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line. Integral Equations and Operator Theory. 32 (3), 332–353 (1998). | |
dc.relation.references | [9] Huy N. T. Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line. Journal of Functional Analysis. 235 (1), 330–354 (2006). | |
dc.relation.references | [10] Schnaubelt R. Sufficient conditions for exponential stability and dichotomy of evolution equations. Forum Math. 11 (5), 543–566 (1999). | |
dc.relation.references | [11] Schnaubelt R. Asymptotic behaviour of parabolic nonautonomous evolution equations. In: Functional Analytic Methods for Evolution Equations, 401–472. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). | |
dc.relation.references | [12] Greiner G. Perturbing the boundary conditions of a generator. Houston Journal of Mathematics. 13 (2), 213–229 (1987). | |
dc.relation.references | [13] Moussi M. Well-posdness and asymptotic behavior of non-autonomous boundary Cauchy problems. Ph.D. thesis, Faculty of science, Oujda (2003). | |
dc.relation.references | [14] Kato T. Linear evolution equations of “hyperbolic” type. J. Fac. Sci., Univ. Tokyo, Sect. I A. 17, 241–258 (1970). | |
dc.relation.references | [15] Daleckii J. L., Krein M. G. Stability of solutions of differential equations in Banach space. Translations of Mathematical Monographs. Providence, Rhode Island (1994). | |
dc.relation.references | [16] Brezis H. Analyse Fonctionnelle: Th´eorie et Applications. Masson (1987). | |
dc.relation.references | [17] Engel K. J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics. 194, Springer-Verlag, New York (2000). | |
dc.relation.referencesen | [1] Boulite S., Maniar L., Moussi M. Wellposedness and asymptotic behaviour of nonautonomous boundary Cauchy problems. Forum Mathematicum. 18 (4), 611–638 (2006). | |
dc.relation.referencesen | [2] Doan T. S., Moussi M., Siegmund S. Integral Manifolds of Nonautonomous Boundary Cauchy Problems. Journal of Nonlinear Evolution Equations and Applications. 2012 (1), 1–15 (2012). | |
dc.relation.referencesen | [3] Jerroudi A., Moussi M. Invariant centre manifolds of non-autonomous boundary Cauchy problems (under review). | |
dc.relation.referencesen | [4] Moussi M. Pullback Attractors of Nonautonomous Boundary Cauchy Problems. Nonlinear Dynamics and Systems Theory. 14 (4), 383–394 (2014). | |
dc.relation.referencesen | [5] Kellermann H. Linear evolution equations with time dependent domain. Semesterbericht Funktionalanalysis T¨ubingen, Wintersemester. 16–44 (1986–1987). | |
dc.relation.referencesen | [6] Lan N. T. On non-autonomous functional differential equations. Journal of Mathematical Analysis and Applications. 239 (1), 158–174 (1999). | |
dc.relation.referencesen | [7] Jerroudi A., Moussi M. Stability and local attractivity for nonautonomous boundary Cauchy problems. Boletim da Sociedade Paranaense de Matem´atica (in press). | |
dc.relation.referencesen | [8] Minh N. V., R¨abiger F., Schnaubelt R. Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line. Integral Equations and Operator Theory. 32 (3), 332–353 (1998). | |
dc.relation.referencesen | [9] Huy N. T. Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line. Journal of Functional Analysis. 235 (1), 330–354 (2006). | |
dc.relation.referencesen | [10] Schnaubelt R. Sufficient conditions for exponential stability and dichotomy of evolution equations. Forum Math. 11 (5), 543–566 (1999). | |
dc.relation.referencesen | [11] Schnaubelt R. Asymptotic behaviour of parabolic nonautonomous evolution equations. In: Functional Analytic Methods for Evolution Equations, 401–472. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). | |
dc.relation.referencesen | [12] Greiner G. Perturbing the boundary conditions of a generator. Houston Journal of Mathematics. 13 (2), 213–229 (1987). | |
dc.relation.referencesen | [13] Moussi M. Well-posdness and asymptotic behavior of non-autonomous boundary Cauchy problems. Ph.D. thesis, Faculty of science, Oujda (2003). | |
dc.relation.referencesen | [14] Kato T. Linear evolution equations of "hyperbolic" type. J. Fac. Sci., Univ. Tokyo, Sect. I A. 17, 241–258 (1970). | |
dc.relation.referencesen | [15] Daleckii J. L., Krein M. G. Stability of solutions of differential equations in Banach space. Translations of Mathematical Monographs. Providence, Rhode Island (1994). | |
dc.relation.referencesen | [16] Brezis H. Analyse Fonctionnelle: Th´eorie et Applications. Masson (1987). | |
dc.relation.referencesen | [17] Engel K. J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics. 194, Springer-Verlag, New York (2000). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | неавтономна крайова задача Коші | |
dc.subject | локальний многовид | |
dc.subject | неавтономне рівняння Фішера–Колмогорова | |
dc.subject | non-autonomous boundary Cauchy problem | |
dc.subject | local manifold | |
dc.subject | non-autonomous Fisher–Kolmogorov equation | |
dc.title | Local manifolds for non-autonomous boundary Cauchy problems: existence and attractivity | |
dc.title.alternative | Локальні многовиди для неавтономних крайових задач Коші: існування та притягання | |
dc.type | Article |
Files
License bundle
1 - 1 of 1