Analysis of algorithms for searching objects in images using convolutional neural network
dc.citation.epage | 133 | |
dc.citation.issue | Volume 6, № 2 | |
dc.citation.journalTitle | Advances in Cyber-Physical Systems | |
dc.citation.spage | 128 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Koval , Ihor | |
dc.date.accessioned | 2022-12-01T09:42:56Z | |
dc.date.available | 2022-12-01T09:42:56Z | |
dc.date.issued | 2021 | |
dc.date.submitted | 2022 | |
dc.description.abstract | The problem of finding objects in images using modern computer vision algorithms has been considered. The description of the main types of algorithms and methods for finding objects based on the use of convolutional neural networks has been given. A comparative analysis and modeling of neural network algorithms to solve the problem of finding objects in images has been conducted. The results of testing neural network models with different architectures on data sets VOC2012 and COCO have been presented. The results of the study of the accuracy of recognition depending on different hyperparameters of learning have been analyzed. The change in the value of the time of determining the location of the object depending on the different architectures of the neural network has been investigated. | |
dc.format.pages | 128-133 | |
dc.identifier.citation | Koval I. Analysis of algorithms for searching objects in images using convolutional neural network / Ihor Koval // Advances in Cyber-Physical Systems. – Lviv : Lviv Politechnic Publishing House, 2021. – Volume 6, № 2. – P. 128–133 . – Bibliography: 17 titles. | |
dc.identifier.doi | https://doi.org/10.23939/acps2021.02.128 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57243 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Advances in Cyber-Physical Systems | |
dc.relation.references | [1] Butenko, V. V. (2015) ‘Finding objects in the image using the adaptive gain algorithm’, Young scientist, 4, pp. 52–56. Available at: https://moluch.ru/archive/84/15604/ (Accessed: 10 October 2021). [2] Dalal, N. and Triggs, B. (2005) ‘Histograms of oriented gradients for human detection’, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 1, pp. 886–893. doi: 10.1109/CVPR.2005.177. [3] Artemov, A. A., Kavalerov, M. V. and Kuznetsov, G. S. (2011) ‘The problem of finding objects in images using computer vision based on color information’, Bulletin of PNRPU. Electrical engineering, information technology, control systems, 5, pp. 70–79. Available at: https://cyberleninka.ru/article/n/ problema-poiska-obektov-na-izobrazheniyah-s-pomoschyu kompyuternogo-zreniya-na-osnove-informatsii-o-tsvete/viewer (Accessed: 10 October 2021). [4] Akimov, A. V. and Sirota, A. A. (2016) ‘Models and algorithms for artificial data multiplication for training face recognition algorithms using the Viola-Jones method’, Computer Optics, 6, pp. 899–906. Available at: https://readera.org/modeli-i algoritmy-iskusstvennogo-razmnozhenija-dannyh-dlja obuchenija-algoritmov-14059619 (Accessed: 10 October 2021). [5] Viola, P. and Jones, M. (2004) ‘Robust real time face detection’, International Journal of Computer Vision, 57(2), pp. 137–154. doi: 10.1023/B:VISI.0000013087.49260.fb. [6] Towards data science (2018) R-CNN, Fast R-CNN, Faster R CNN, YOLO – Object Detection Algorithms. Available at: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn yolo-object-detection-algorithms-36d53571365e (Accessed: 10 October 2021). [7] Kushnir, D. and Paramud, Y. (2019) ‘Methods for real-time object searching and recognizing in video images on ios mobile platform’, Computer systems and network, 1(1), pp. 24–34. doi: 10.23939/csn2019.01.024. [8] Michelucci, U. (2019) Advanced Applied Deep Learning: Convolutional Neural Networks and Object Detection, 1st edition, TOELT LLC, Dübendorf, Switzerland, September 29 2019, 303 p. [9] Girshick, R., Darrell, J. and Malik, T. (2015) ‘Region-Based Convolutional Networks for Accurate Object Detection and Segmentation’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, pp. 142-158. doi: 10.1109/TPAMI.2015.2437384. [10] Girshick, R. (2015) ‘Fast R-CNN’, International Conference on Computer Vision (ICC), pp. 1440–1448. doi: 10.1109/ICCV.2015.169. [11] Girshick, R., Shaoqing, R. and Kaiming, H. (2015) ‘Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks’, Neural Information Processing Systems (NIPS), 39(6), pp. 1137-1149. doi: 10.1109/TPAMI.2016.2577031. [12] Wang, Y., Wang, C., Zhan, H., Yingbo, G. and Wei, S. (2019) ‘Automatic Ship Detection Based on RetinaNet Using Multi Resolution’, Remote Sensing, 11(5), 531 p. doi: 10.3390/rs11050531. [13] Pascal 2 (2012) The PASCAL Visual Object Classes Challenge 2012 (VOC2012). Available at: http://host.robots.ox.ac.uk/ pascal/VOC/voc2012/index.html (Accessed: 10 October 2021). [14] Microsoft (2021) COCO: Common Objects in Context. Available at: http://cocodataset.org/#home (Accessed: 10 October 2021). [15] Zitnick, C. and Dollár, P. (2014) ‘Edge boxes: Locating object proposals from edges’, Computer Vision, 5, pp. 391–405. doi: 10.1007/978-3-319-10602-1_26. [16] Sande, J., Gevers, K. and Smeulders, T. (2013) ‘Selective Search for Object Recognition’, International Journal of Computer Vision, 104, pp. 154–171. doi: 10.1007/s11263-013- 0620-5. [17] Chopra, R., England, A. and Noordeen Alaudeen, M. (2019) Data Science with Python: Combine Python with machine learning principles to discover hidden patterns in raw data, Packt Publishing Ltd, July 2019, 426 p. | |
dc.subject | Object detection, neural networks, deep learning, R-CNN, Fast R-CNN, Faster R-CNN | |
dc.title | Analysis of algorithms for searching objects in images using convolutional neural network | |
dc.type | Article |
Files
Original bundle
1 - 1 of 1