Simulation of statistical mean and variance of normally distributed data NX(mX, σX) transformed by nonlinear functions g(X) = cos X, eX and their inverse functions g−1(X) = arccos X, ln X

dc.citation.epage1022
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage1014
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКособуцький, П. С.
dc.contributor.authorКаркульовська, М. С.
dc.contributor.authorKosoboutskyy, P. S.
dc.contributor.authorKarkulovska, M. S.
dc.coverage.placenameЛьвів
dc.date.accessioned2025-03-10T09:21:57Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОбгрунтовані аналітичні співвідношення обчислення статистичних середніх і дисперсії функцій g(X) = cos X, eX, g−1(X) = arccos X, ln X перетворення нормально NX(mX, σX) розподіленої випадкової величини.
dc.description.abstractThis paper presents analytical relationships for calculating statistical mean and variances of functions g(X)=cosX, eX, g−1(X)=arccosX, lnX of transformation of a normally NX(mX, σX) distributed random variable.
dc.format.extent1014-1022
dc.format.pages9
dc.identifier.citationKosoboutskyy P. S. Simulation of statistical mean and variance of normally distributed data NX(mX, σX) transformed by nonlinear functions g(X) = cos X, eX and their inverse functions g−1(X) = arccos X, ln X / P. S. Kosoboutskyy, M. S. Karkulovska // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1014–1022.
dc.identifier.citationenKosoboutskyy P. S. Simulation of statistical mean and variance of normally distributed data NX(mX, σX) transformed by nonlinear functions g(X) = cos X, eX and their inverse functions g−1(X) = arccos X, ln X / P. S. Kosoboutskyy, M. S. Karkulovska // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1014–1022.
dc.identifier.doidoi.org/10.23939/mmc2023.04.1014
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64072
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 4 (10), 2023
dc.relation.references[1] Hudson D. J. Lectures on elementary statistics and probability. Geneva, CERN (1963).
dc.relation.references[2] Ku H. H. Notes on the Use of Propagation of Error Formulas. Journal of Research of the National Bureau of Standards. Section C: Engineering and Instrumentation. 70C (4), 263–273 (1966).
dc.relation.references[3] Bevington P., Robinson D. K. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, Boston (2002).
dc.relation.references[4] Taylor J. R. An Introduction to Error Analysis. Univ. Sci. Books, Sausalito, CA (1997).
dc.relation.references[5] Wikipedia. Propagation of uncertainty. https://en.wikipedia.org/wiki/Propagation of uncertainty.
dc.relation.references[6] Suhir E. Applied Probability for Engineers and Scientistics. McGraw-Hill Companies (1997).
dc.relation.references[7] Papoulis A. Probability, Random Variables, and Stochastic Processes. McGraw-Hill (1991).
dc.relation.references[8] Bohm G., Zech G. Introduction to Statistics and data Analysis for Physics. Verlag Deutsches ElektronenSynchrotron (2010).
dc.relation.references[9] Samorodnitsky G., Taqqu M. S. Stable Non-Gaussian Random Processes. New York, Chapman and Hall (1994).
dc.relation.references[10] Wichmann E. Quantum Physics. Berkeley Physics Course. Vol. 4. McGraw-Hill Book Company (1971).
dc.relation.references[11] Leach А. Molecular Modelling: Principles and Applications. Prentice Hall (2001).
dc.relation.references[12] Goodman J. W. Statistical Optics. John Wiley and Sons. Inc. (2015).
dc.relation.references[13] Patel J. K., Read C. B. Handbook of the Normal Distribution. New York, Dekker (1982).
dc.relation.references[14] Marvin R., Arnljot H. System Reliability Theory: Models, Statistical Methods, and Applications. John Wiley and Sons. Inc. (2004).
dc.relation.references[15] Liang T., Jia X. Z. An empirical formula for yield estimation from singly truncated performance data of qualified semiconductor devices. Journal of Semiconductors. 33 (12), 125008 (2012).
dc.relation.references[16] Gu K., Jia X., You T., Liang T. The yield estimation of semiconductor products based on truncated samples. International Journal of Metrology and Quality Engineering. 4 (3), 215–220 (2013).
dc.relation.references[17] Einstein A. On the motion of particles suspended in a fluid at rest, required by the molecular-kinetic theory of heat. Collection of articles: Leningrad, ONTI-GROTL (1936).
dc.relation.references[18] Einstein A., Smolukhovsky M. Brownian motion. Collection of articles. Leningrad, ONTI-GROTL (1936).
dc.relation.references[19] Risken H. The Fokker–Planck quation. Berlin–Heidelberg, Springer (1989).
dc.relation.references[20] Gihman I., Skorochodov A. The Theory of Statistic Processes I. Springer, Berlin (2004).
dc.relation.references[21] Kosobutskyy P. S., Karkulovska M. S. Simulation of statistical mean and variance of normally distributed random values, transformed by nonlinear functions p |X| and √ X. Mathematical Modeling and Computing. 9 (2), 318–325 (2022).
dc.relation.references[22] Rode G. G. Propagation of measurement errors and measured means of a physical quantity for the elementary functions cos X and arccos X. Ukrainian Journal of Physics. 61 (4), 345–352 (2016).
dc.relation.references[23] Dwight H. Tables of Integrals and other Mathematical data. New York, The Macmillan Company (1961).
dc.relation.references[24] Abramowitz M., Stegun I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York, Dover (1972)
dc.relation.referencesen[1] Hudson D. J. Lectures on elementary statistics and probability. Geneva, CERN (1963).
dc.relation.referencesen[2] Ku H. H. Notes on the Use of Propagation of Error Formulas. Journal of Research of the National Bureau of Standards. Section C: Engineering and Instrumentation. 70C (4), 263–273 (1966).
dc.relation.referencesen[3] Bevington P., Robinson D. K. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, Boston (2002).
dc.relation.referencesen[4] Taylor J. R. An Introduction to Error Analysis. Univ. Sci. Books, Sausalito, CA (1997).
dc.relation.referencesen[5] Wikipedia. Propagation of uncertainty. https://en.wikipedia.org/wiki/Propagation of uncertainty.
dc.relation.referencesen[6] Suhir E. Applied Probability for Engineers and Scientistics. McGraw-Hill Companies (1997).
dc.relation.referencesen[7] Papoulis A. Probability, Random Variables, and Stochastic Processes. McGraw-Hill (1991).
dc.relation.referencesen[8] Bohm G., Zech G. Introduction to Statistics and data Analysis for Physics. Verlag Deutsches ElektronenSynchrotron (2010).
dc.relation.referencesen[9] Samorodnitsky G., Taqqu M. S. Stable Non-Gaussian Random Processes. New York, Chapman and Hall (1994).
dc.relation.referencesen[10] Wichmann E. Quantum Physics. Berkeley Physics Course. Vol. 4. McGraw-Hill Book Company (1971).
dc.relation.referencesen[11] Leach A. Molecular Modelling: Principles and Applications. Prentice Hall (2001).
dc.relation.referencesen[12] Goodman J. W. Statistical Optics. John Wiley and Sons. Inc. (2015).
dc.relation.referencesen[13] Patel J. K., Read C. B. Handbook of the Normal Distribution. New York, Dekker (1982).
dc.relation.referencesen[14] Marvin R., Arnljot H. System Reliability Theory: Models, Statistical Methods, and Applications. John Wiley and Sons. Inc. (2004).
dc.relation.referencesen[15] Liang T., Jia X. Z. An empirical formula for yield estimation from singly truncated performance data of qualified semiconductor devices. Journal of Semiconductors. 33 (12), 125008 (2012).
dc.relation.referencesen[16] Gu K., Jia X., You T., Liang T. The yield estimation of semiconductor products based on truncated samples. International Journal of Metrology and Quality Engineering. 4 (3), 215–220 (2013).
dc.relation.referencesen[17] Einstein A. On the motion of particles suspended in a fluid at rest, required by the molecular-kinetic theory of heat. Collection of articles: Leningrad, ONTI-GROTL (1936).
dc.relation.referencesen[18] Einstein A., Smolukhovsky M. Brownian motion. Collection of articles. Leningrad, ONTI-GROTL (1936).
dc.relation.referencesen[19] Risken H. The Fokker–Planck quation. Berlin–Heidelberg, Springer (1989).
dc.relation.referencesen[20] Gihman I., Skorochodov A. The Theory of Statistic Processes I. Springer, Berlin (2004).
dc.relation.referencesen[21] Kosobutskyy P. S., Karkulovska M. S. Simulation of statistical mean and variance of normally distributed random values, transformed by nonlinear functions p |X| and √ X. Mathematical Modeling and Computing. 9 (2), 318–325 (2022).
dc.relation.referencesen[22] Rode G. G. Propagation of measurement errors and measured means of a physical quantity for the elementary functions cos X and arccos X. Ukrainian Journal of Physics. 61 (4), 345–352 (2016).
dc.relation.referencesen[23] Dwight H. Tables of Integrals and other Mathematical data. New York, The Macmillan Company (1961).
dc.relation.referencesen[24] Abramowitz M., Stegun I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York, Dover (1972)
dc.relation.urihttps://en.wikipedia.org/wiki/Propagation
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectстатистичне середнє
dc.subjectдисперсія
dc.subjectперетворення
dc.subjectнормальний розподіл
dc.subjectвипадкова величина
dc.subjectstatistical mean
dc.subjectvariance
dc.subjecttransformation
dc.subjectnormal distribution
dc.subjectrandom variable
dc.titleSimulation of statistical mean and variance of normally distributed data NX(mX, σX) transformed by nonlinear functions g(X) = cos X, eX and their inverse functions g−1(X) = arccos X, ln X
dc.title.alternativeМоделювання статистичних середнього та дисперсії нормально NX(mX, σX) розподілених даних, перетворених нелінійними функціями g(X) = cos X, eX та оберненими до них g−1(X) = arccos X, ln X
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n4_Kosoboutskyy_P_S-Simulation_of_1014-1022.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n4_Kosoboutskyy_P_S-Simulation_of_1014-1022__COVER.png
Size:
452.6 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: