Hemivariational inverse problem for contact problem with locking materials

dc.citation.epage677
dc.citation.issue4
dc.citation.spage665
dc.contributor.affiliationУніверситет Султана Мулая Слімана
dc.contributor.affiliationУніверситет Ібн Зора
dc.contributor.affiliationSultan Moulay Slimane University
dc.contributor.affiliationIbn Zohr University
dc.contributor.authorФаіз, Е.
dc.contributor.authorБаіз, О.
dc.contributor.authorБенаісса, Х.
dc.contributor.authorЕль Мутавакіль, Д.
dc.contributor.authorFaiz, Z.
dc.contributor.authorBaiz, O.
dc.contributor.authorBenaissa, H.
dc.contributor.authorEl Moutawakil, D.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-11-01T07:49:53Z
dc.date.available2023-11-01T07:49:53Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractМетою цієї роботи є дослідження оберненої задачі для моделі фрикційного контакту запірного матеріалу. Деформівне тіло складається з електроеластичних запірних матеріалів. Характер запирання робить розв’язок належним до опуклої множини, контакт подається у вигляді багатозначної нормальної відповідності, а тертя описуються субградієнтом локального відображення Ліпшица. Розроблено варіаційне формулювання моделі, поєднуючи дві геміваріаційні нерівності у пов’язану систему. Існування та єдиність розв’язку демонструються на основі нещодавніх висновків теорії геміваріаційних нерівностей та аргументу з фіксованою точкою. Далі подано результат неперервної залежності, а потім встановено існування розв’язку оберненої задачі для задачі тертя контакту з п’єзоелектричним запірним матеріалом.
dc.description.abstractThe aim of this work is to study an inverse problem for a frictional contact model for locking material. The deformable body consists of electro-elastic-locking materials. Here, the locking character makes the solution belong to a convex set, the contact is presented in the form of multivalued normal compliance, and frictions are described with a sub-gradient of a locally Lipschitz mapping. We develop the variational formulation of the model by combining two hemivariational inequalities in a linked system. The existence and uniqueness of the solution are demonstrated utilizing recent conclusions from hemivariational inequalities theory and a fixed point argument. Finally, we provided a continuous dependence result and then we established the existence of a solution to an inverse problem for piezoelectric-locking material frictional contact problem.
dc.format.extent665-677
dc.format.pages13
dc.identifier.citationHemivariational inverse problem for contact problem with locking materials / Z. Faiz, O. Baiz, H. Benaissa, D. El Moutawakil // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 665–677.
dc.identifier.citationenHemivariational inverse problem for contact problem with locking materials / Z. Faiz, O. Baiz, H. Benaissa, D. El Moutawakil // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 665–677.
dc.identifier.doi10.23939/mmc2021.04.665
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60456
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 4 (8), 2021
dc.relation.references[1] Denkowski Z., Mig´orski S., Papageorgiou N. S. An introduction to nonlinear analysis: theory. Kluwer Academic/Plenum Publishers, New York (2003).
dc.relation.references[2] Barabasz B., Mig´orski S., Schaefer R. Multi deme, twin adaptive strategy hp-HGS. Inverse Problems in Science and Engineering. 19 (1), 3–16 (2011).
dc.relation.references[3] Panagiotopoulos P. D. Nonconvex energy functions, hemivariational inequalities and substationary principles. Acta Mechanica. 48 (3–4), 111–130 (1983).
dc.relation.references[4] Naniewicz Z., Panagiotopoulos P. D. Mathematical theory of hemivariational inequalities and applications. Marcel Dekker Inc., New York (1995).
dc.relation.references[5] Sofonea M., Mig´orski S. Variational-hemivariational Inequalities with Applications. Pure and Applied Mathematics. Chapman and Hall/CRC Press, Boca Raton–London (2018).
dc.relation.references[6] Mig´orski S., Zeng S. Penalty and regularization method for variational-hemivariational inequalities with application to frictional contact. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift f¨ur Angewandte Mathematik und Mechanik. 98 (8), 1503–1520 (2018).
dc.relation.references[7] Afraites L., Hadri A., Laghrib A., Nachaoui M. A high order PDE-constrained optimization for the image denoising problem. Inverse Problems in Science and Engineering. 1-43 (2020).
dc.relation.references[8] Khan A., Mig´orski S., Sama M. Inverse problems for multi-valued quasi variational inequalities and noncoercvie variational inequalities with noisy data. Optimization. 68 (10), 1897–1931 (2019).
dc.relation.references[9] Gockenbach M. S., Khan A. A. An abstract framework for elliptic inverse problems. In output least-squares approach. Mathematics and Mechanics of Solids. 12 (3), 259–276 (2007).
dc.relation.references[10] Hasanov A. Inverse coefficient problems for monotone potential operators. Inverse Problems. 13 (5), 1265–1278 (1997).
dc.relation.references[11] Mig´orski S., Khan A., Shengda Z. Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems. Inverse Problems. 36 (2), 024006 (2020).
dc.relation.references[12] Afraites L., Hadri A., Laghrib A. A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. Inverse Problems. 36 (2), 025006 (2019).
dc.relation.references[13] Prager W. On elastic, perfectly locking materials. In: G¨ortler H. (eds) Applied Mechanics. Springer, Berlin, Heidelberg (1966).
dc.relation.references[14] Prager W. On ideal-locking materials. Transactions of the Society of Rheology. 1, 169–175 (1975).
dc.relation.references[15] Mig´orski S., Ogorzaly J. A variational-hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction. Acta Mathematica Scientia. 37 (6), 1639–1652 (2017).
dc.relation.references[16] Essoufi E.-H., Zafrar A. Dual methods for frictional contact problem with electroelastic-locking materials. Optimization. 70 (7), 1581–1608 (2020).
dc.relation.references[17] Gamorsk P., Mig´orski S. Hemivariational inequalities modeling electro-elastic unilateral frictional contact problem. Mathematics and Mechanics of Solids. 23 (3), 329–347 (2017).
dc.relation.references[18] Zeng B., Mig´orski S. Variational-hemivariational inverse problems for unilateral frictional contact. Applicable Analysis. 99 (2), 293–312 (2020).
dc.relation.references[19] Szafraniec P. Analysis of an elasto-piezoelectric system of hemivariational inequalities with thermal effects. Acta Mathematica Scientia. 37 (4), 1048–1060 (2017).
dc.relation.references[20] Nowacki W. Foundations of linear piezoelectricity. In: Parkus H. (ed.) Interactions in Elastic Solids. Springer, Wein (1979).
dc.relation.references[21] Mig´orski S, Ochal A., Sofonea M. Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems. In: Advances in mechanics and mathematics, New York, Springer (2013).
dc.relation.references[22] Sofonea M. History-Dependent Inequalities for Contact Problems with Locking Materials. Journal of Elasticity. 134, 127–148 (2019).
dc.relation.referencesen[1] Denkowski Z., Mig´orski S., Papageorgiou N. S. An introduction to nonlinear analysis: theory. Kluwer Academic/Plenum Publishers, New York (2003).
dc.relation.referencesen[2] Barabasz B., Mig´orski S., Schaefer R. Multi deme, twin adaptive strategy hp-HGS. Inverse Problems in Science and Engineering. 19 (1), 3–16 (2011).
dc.relation.referencesen[3] Panagiotopoulos P. D. Nonconvex energy functions, hemivariational inequalities and substationary principles. Acta Mechanica. 48 (3–4), 111–130 (1983).
dc.relation.referencesen[4] Naniewicz Z., Panagiotopoulos P. D. Mathematical theory of hemivariational inequalities and applications. Marcel Dekker Inc., New York (1995).
dc.relation.referencesen[5] Sofonea M., Mig´orski S. Variational-hemivariational Inequalities with Applications. Pure and Applied Mathematics. Chapman and Hall/CRC Press, Boca Raton–London (2018).
dc.relation.referencesen[6] Mig´orski S., Zeng S. Penalty and regularization method for variational-hemivariational inequalities with application to frictional contact. ZAMM – Journal of Applied Mathematics and Mechanics, Zeitschrift f¨ur Angewandte Mathematik und Mechanik. 98 (8), 1503–1520 (2018).
dc.relation.referencesen[7] Afraites L., Hadri A., Laghrib A., Nachaoui M. A high order PDE-constrained optimization for the image denoising problem. Inverse Problems in Science and Engineering. 1-43 (2020).
dc.relation.referencesen[8] Khan A., Mig´orski S., Sama M. Inverse problems for multi-valued quasi variational inequalities and noncoercvie variational inequalities with noisy data. Optimization. 68 (10), 1897–1931 (2019).
dc.relation.referencesen[9] Gockenbach M. S., Khan A. A. An abstract framework for elliptic inverse problems. In output least-squares approach. Mathematics and Mechanics of Solids. 12 (3), 259–276 (2007).
dc.relation.referencesen[10] Hasanov A. Inverse coefficient problems for monotone potential operators. Inverse Problems. 13 (5), 1265–1278 (1997).
dc.relation.referencesen[11] Mig´orski S., Khan A., Shengda Z. Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems. Inverse Problems. 36 (2), 024006 (2020).
dc.relation.referencesen[12] Afraites L., Hadri A., Laghrib A. A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. Inverse Problems. 36 (2), 025006 (2019).
dc.relation.referencesen[13] Prager W. On elastic, perfectly locking materials. In: G¨ortler H. (eds) Applied Mechanics. Springer, Berlin, Heidelberg (1966).
dc.relation.referencesen[14] Prager W. On ideal-locking materials. Transactions of the Society of Rheology. 1, 169–175 (1975).
dc.relation.referencesen[15] Mig´orski S., Ogorzaly J. A variational-hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction. Acta Mathematica Scientia. 37 (6), 1639–1652 (2017).
dc.relation.referencesen[16] Essoufi E.-H., Zafrar A. Dual methods for frictional contact problem with electroelastic-locking materials. Optimization. 70 (7), 1581–1608 (2020).
dc.relation.referencesen[17] Gamorsk P., Mig´orski S. Hemivariational inequalities modeling electro-elastic unilateral frictional contact problem. Mathematics and Mechanics of Solids. 23 (3), 329–347 (2017).
dc.relation.referencesen[18] Zeng B., Mig´orski S. Variational-hemivariational inverse problems for unilateral frictional contact. Applicable Analysis. 99 (2), 293–312 (2020).
dc.relation.referencesen[19] Szafraniec P. Analysis of an elasto-piezoelectric system of hemivariational inequalities with thermal effects. Acta Mathematica Scientia. 37 (4), 1048–1060 (2017).
dc.relation.referencesen[20] Nowacki W. Foundations of linear piezoelectricity. In: Parkus H. (ed.) Interactions in Elastic Solids. Springer, Wein (1979).
dc.relation.referencesen[21] Mig´orski S, Ochal A., Sofonea M. Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems. In: Advances in mechanics and mathematics, New York, Springer (2013).
dc.relation.referencesen[22] Sofonea M. History-Dependent Inequalities for Contact Problems with Locking Materials. Journal of Elasticity. 134, 127–148 (2019).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectзіапірний п’єзоелектричний матеріал
dc.subjectзадача про фрикційний контакт
dc.subjectобернена задача
dc.subjectгеміваріаційні нерівності
dc.subjectlocking piezoelectric material
dc.subjectfrictional contact problem
dc.subjectinverse problem
dc.subjecthemivariational inequality
dc.titleHemivariational inverse problem for contact problem with locking materials
dc.title.alternativeГеміваріаційна обернена задача для контактної задачі зі запірними матеріалами
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021v8n4_Faiz_Z-Hemivariational_inverse_problem_665-677.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2021v8n4_Faiz_Z-Hemivariational_inverse_problem_665-677__COVER.png
Size:
388.2 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: