Hemivariational inverse problem for contact problem with locking materials
dc.citation.epage | 677 | |
dc.citation.issue | 4 | |
dc.citation.spage | 665 | |
dc.contributor.affiliation | Університет Султана Мулая Слімана | |
dc.contributor.affiliation | Університет Ібн Зора | |
dc.contributor.affiliation | Sultan Moulay Slimane University | |
dc.contributor.affiliation | Ibn Zohr University | |
dc.contributor.author | Фаіз, Е. | |
dc.contributor.author | Баіз, О. | |
dc.contributor.author | Бенаісса, Х. | |
dc.contributor.author | Ель Мутавакіль, Д. | |
dc.contributor.author | Faiz, Z. | |
dc.contributor.author | Baiz, O. | |
dc.contributor.author | Benaissa, H. | |
dc.contributor.author | El Moutawakil, D. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-11-01T07:49:53Z | |
dc.date.available | 2023-11-01T07:49:53Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | Метою цієї роботи є дослідження оберненої задачі для моделі фрикційного контакту запірного матеріалу. Деформівне тіло складається з електроеластичних запірних матеріалів. Характер запирання робить розв’язок належним до опуклої множини, контакт подається у вигляді багатозначної нормальної відповідності, а тертя описуються субградієнтом локального відображення Ліпшица. Розроблено варіаційне формулювання моделі, поєднуючи дві геміваріаційні нерівності у пов’язану систему. Існування та єдиність розв’язку демонструються на основі нещодавніх висновків теорії геміваріаційних нерівностей та аргументу з фіксованою точкою. Далі подано результат неперервної залежності, а потім встановено існування розв’язку оберненої задачі для задачі тертя контакту з п’єзоелектричним запірним матеріалом. | |
dc.description.abstract | The aim of this work is to study an inverse problem for a frictional contact model for locking material. The deformable body consists of electro-elastic-locking materials. Here, the locking character makes the solution belong to a convex set, the contact is presented in the form of multivalued normal compliance, and frictions are described with a sub-gradient of a locally Lipschitz mapping. We develop the variational formulation of the model by combining two hemivariational inequalities in a linked system. The existence and uniqueness of the solution are demonstrated utilizing recent conclusions from hemivariational inequalities theory and a fixed point argument. Finally, we provided a continuous dependence result and then we established the existence of a solution to an inverse problem for piezoelectric-locking material frictional contact problem. | |
dc.format.extent | 665-677 | |
dc.format.pages | 13 | |
dc.identifier.citation | Hemivariational inverse problem for contact problem with locking materials / Z. Faiz, O. Baiz, H. Benaissa, D. El Moutawakil // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 665–677. | |
dc.identifier.citationen | Hemivariational inverse problem for contact problem with locking materials / Z. Faiz, O. Baiz, H. Benaissa, D. El Moutawakil // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 665–677. | |
dc.identifier.doi | 10.23939/mmc2021.04.665 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60456 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 4 (8), 2021 | |
dc.relation.references | [1] Denkowski Z., Mig´orski S., Papageorgiou N. S. An introduction to nonlinear analysis: theory. Kluwer Academic/Plenum Publishers, New York (2003). | |
dc.relation.references | [2] Barabasz B., Mig´orski S., Schaefer R. Multi deme, twin adaptive strategy hp-HGS. Inverse Problems in Science and Engineering. 19 (1), 3–16 (2011). | |
dc.relation.references | [3] Panagiotopoulos P. D. Nonconvex energy functions, hemivariational inequalities and substationary principles. Acta Mechanica. 48 (3–4), 111–130 (1983). | |
dc.relation.references | [4] Naniewicz Z., Panagiotopoulos P. D. Mathematical theory of hemivariational inequalities and applications. Marcel Dekker Inc., New York (1995). | |
dc.relation.references | [5] Sofonea M., Mig´orski S. Variational-hemivariational Inequalities with Applications. Pure and Applied Mathematics. Chapman and Hall/CRC Press, Boca Raton–London (2018). | |
dc.relation.references | [6] Mig´orski S., Zeng S. Penalty and regularization method for variational-hemivariational inequalities with application to frictional contact. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift f¨ur Angewandte Mathematik und Mechanik. 98 (8), 1503–1520 (2018). | |
dc.relation.references | [7] Afraites L., Hadri A., Laghrib A., Nachaoui M. A high order PDE-constrained optimization for the image denoising problem. Inverse Problems in Science and Engineering. 1-43 (2020). | |
dc.relation.references | [8] Khan A., Mig´orski S., Sama M. Inverse problems for multi-valued quasi variational inequalities and noncoercvie variational inequalities with noisy data. Optimization. 68 (10), 1897–1931 (2019). | |
dc.relation.references | [9] Gockenbach M. S., Khan A. A. An abstract framework for elliptic inverse problems. In output least-squares approach. Mathematics and Mechanics of Solids. 12 (3), 259–276 (2007). | |
dc.relation.references | [10] Hasanov A. Inverse coefficient problems for monotone potential operators. Inverse Problems. 13 (5), 1265–1278 (1997). | |
dc.relation.references | [11] Mig´orski S., Khan A., Shengda Z. Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems. Inverse Problems. 36 (2), 024006 (2020). | |
dc.relation.references | [12] Afraites L., Hadri A., Laghrib A. A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. Inverse Problems. 36 (2), 025006 (2019). | |
dc.relation.references | [13] Prager W. On elastic, perfectly locking materials. In: G¨ortler H. (eds) Applied Mechanics. Springer, Berlin, Heidelberg (1966). | |
dc.relation.references | [14] Prager W. On ideal-locking materials. Transactions of the Society of Rheology. 1, 169–175 (1975). | |
dc.relation.references | [15] Mig´orski S., Ogorzaly J. A variational-hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction. Acta Mathematica Scientia. 37 (6), 1639–1652 (2017). | |
dc.relation.references | [16] Essoufi E.-H., Zafrar A. Dual methods for frictional contact problem with electroelastic-locking materials. Optimization. 70 (7), 1581–1608 (2020). | |
dc.relation.references | [17] Gamorsk P., Mig´orski S. Hemivariational inequalities modeling electro-elastic unilateral frictional contact problem. Mathematics and Mechanics of Solids. 23 (3), 329–347 (2017). | |
dc.relation.references | [18] Zeng B., Mig´orski S. Variational-hemivariational inverse problems for unilateral frictional contact. Applicable Analysis. 99 (2), 293–312 (2020). | |
dc.relation.references | [19] Szafraniec P. Analysis of an elasto-piezoelectric system of hemivariational inequalities with thermal effects. Acta Mathematica Scientia. 37 (4), 1048–1060 (2017). | |
dc.relation.references | [20] Nowacki W. Foundations of linear piezoelectricity. In: Parkus H. (ed.) Interactions in Elastic Solids. Springer, Wein (1979). | |
dc.relation.references | [21] Mig´orski S, Ochal A., Sofonea M. Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems. In: Advances in mechanics and mathematics, New York, Springer (2013). | |
dc.relation.references | [22] Sofonea M. History-Dependent Inequalities for Contact Problems with Locking Materials. Journal of Elasticity. 134, 127–148 (2019). | |
dc.relation.referencesen | [1] Denkowski Z., Mig´orski S., Papageorgiou N. S. An introduction to nonlinear analysis: theory. Kluwer Academic/Plenum Publishers, New York (2003). | |
dc.relation.referencesen | [2] Barabasz B., Mig´orski S., Schaefer R. Multi deme, twin adaptive strategy hp-HGS. Inverse Problems in Science and Engineering. 19 (1), 3–16 (2011). | |
dc.relation.referencesen | [3] Panagiotopoulos P. D. Nonconvex energy functions, hemivariational inequalities and substationary principles. Acta Mechanica. 48 (3–4), 111–130 (1983). | |
dc.relation.referencesen | [4] Naniewicz Z., Panagiotopoulos P. D. Mathematical theory of hemivariational inequalities and applications. Marcel Dekker Inc., New York (1995). | |
dc.relation.referencesen | [5] Sofonea M., Mig´orski S. Variational-hemivariational Inequalities with Applications. Pure and Applied Mathematics. Chapman and Hall/CRC Press, Boca Raton–London (2018). | |
dc.relation.referencesen | [6] Mig´orski S., Zeng S. Penalty and regularization method for variational-hemivariational inequalities with application to frictional contact. ZAMM – Journal of Applied Mathematics and Mechanics, Zeitschrift f¨ur Angewandte Mathematik und Mechanik. 98 (8), 1503–1520 (2018). | |
dc.relation.referencesen | [7] Afraites L., Hadri A., Laghrib A., Nachaoui M. A high order PDE-constrained optimization for the image denoising problem. Inverse Problems in Science and Engineering. 1-43 (2020). | |
dc.relation.referencesen | [8] Khan A., Mig´orski S., Sama M. Inverse problems for multi-valued quasi variational inequalities and noncoercvie variational inequalities with noisy data. Optimization. 68 (10), 1897–1931 (2019). | |
dc.relation.referencesen | [9] Gockenbach M. S., Khan A. A. An abstract framework for elliptic inverse problems. In output least-squares approach. Mathematics and Mechanics of Solids. 12 (3), 259–276 (2007). | |
dc.relation.referencesen | [10] Hasanov A. Inverse coefficient problems for monotone potential operators. Inverse Problems. 13 (5), 1265–1278 (1997). | |
dc.relation.referencesen | [11] Mig´orski S., Khan A., Shengda Z. Inverse problems for nonlinear quasi-hemivariational inequalities with application to mixed boundary value problems. Inverse Problems. 36 (2), 024006 (2020). | |
dc.relation.referencesen | [12] Afraites L., Hadri A., Laghrib A. A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. Inverse Problems. 36 (2), 025006 (2019). | |
dc.relation.referencesen | [13] Prager W. On elastic, perfectly locking materials. In: G¨ortler H. (eds) Applied Mechanics. Springer, Berlin, Heidelberg (1966). | |
dc.relation.referencesen | [14] Prager W. On ideal-locking materials. Transactions of the Society of Rheology. 1, 169–175 (1975). | |
dc.relation.referencesen | [15] Mig´orski S., Ogorzaly J. A variational-hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction. Acta Mathematica Scientia. 37 (6), 1639–1652 (2017). | |
dc.relation.referencesen | [16] Essoufi E.-H., Zafrar A. Dual methods for frictional contact problem with electroelastic-locking materials. Optimization. 70 (7), 1581–1608 (2020). | |
dc.relation.referencesen | [17] Gamorsk P., Mig´orski S. Hemivariational inequalities modeling electro-elastic unilateral frictional contact problem. Mathematics and Mechanics of Solids. 23 (3), 329–347 (2017). | |
dc.relation.referencesen | [18] Zeng B., Mig´orski S. Variational-hemivariational inverse problems for unilateral frictional contact. Applicable Analysis. 99 (2), 293–312 (2020). | |
dc.relation.referencesen | [19] Szafraniec P. Analysis of an elasto-piezoelectric system of hemivariational inequalities with thermal effects. Acta Mathematica Scientia. 37 (4), 1048–1060 (2017). | |
dc.relation.referencesen | [20] Nowacki W. Foundations of linear piezoelectricity. In: Parkus H. (ed.) Interactions in Elastic Solids. Springer, Wein (1979). | |
dc.relation.referencesen | [21] Mig´orski S, Ochal A., Sofonea M. Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems. In: Advances in mechanics and mathematics, New York, Springer (2013). | |
dc.relation.referencesen | [22] Sofonea M. History-Dependent Inequalities for Contact Problems with Locking Materials. Journal of Elasticity. 134, 127–148 (2019). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | зіапірний п’єзоелектричний матеріал | |
dc.subject | задача про фрикційний контакт | |
dc.subject | обернена задача | |
dc.subject | геміваріаційні нерівності | |
dc.subject | locking piezoelectric material | |
dc.subject | frictional contact problem | |
dc.subject | inverse problem | |
dc.subject | hemivariational inequality | |
dc.title | Hemivariational inverse problem for contact problem with locking materials | |
dc.title.alternative | Геміваріаційна обернена задача для контактної задачі зі запірними матеріалами | |
dc.type | Article |
Files
License bundle
1 - 1 of 1