An efficient solvent free microwave assisted MgFe2O4 magnetic nanoparticles catalyzed green protocol towards Michael addition

dc.citation.epage22
dc.citation.issue1
dc.citation.spage18
dc.contributor.affiliationG.L.A University
dc.contributor.authorBansal, Shobha
dc.contributor.authorSingh, Prabal Pratap
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-02T10:50:15Z
dc.date.available2020-03-02T10:50:15Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractДосліджено магнітні наночастинки MgFe2O4 як ефективний каталізатор для синтезу продуктів за реакцією Міхаеля внаслідок оброблення мікрохвилями у відсутності розчинника заміщених халконів і β-нітро стиролів з електронними донорами, такими як малононітрил та етилціаноацетат. Показано, що магнітні наночастинки MgFe2O4 є кращими гетерогенними каталізаторами (10 мол. %) у порівнянні з відомими каталізаторами. Визначено, що за п’ять циклів роботи синтезований каталіза- ор не втрачає каталітичної активності.
dc.description.abstractMgFe2O4 magnetic nanoparticles were used as an efficient catalyst for the synthesis of Michael products by treating substituted chalcones and β-nitro styrenes with electron donar species like malononitrile and ethyl cyanoacetate in solvent free microwave conditions. In this study, we report that MgFe2O4 magnetic nanoparticles were the best heterogeneous catalyst with 10 mol% loading for synthesis of Michael products as compared to several reported catalysts. The reusability of MgFe2O4 nanoparticles was checked for 5 times without appreciable loss of catalytic activity.
dc.format.extent18-22
dc.format.pages5
dc.identifier.citationBansal S. An efficient solvent free microwave assisted MgFe2O4 magnetic nanoparticles catalyzed green protocol towards Michael addition / Shobha Bansal, Prabal Pratap Singh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 18–22.
dc.identifier.citationenBansal S. An efficient solvent free microwave assisted MgFe2O4 magnetic nanoparticles catalyzed green protocol towards Michael addition / Shobha Bansal, Prabal Pratap Singh // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 1. — P. 18–22.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46426
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (13), 2019
dc.relation.references1. Gawley R.: Synthesis, 1976, 12, 777. https://doi.org/10.1055/s-1976-24200
dc.relation.references2. JungM.: Tetrahedron, 1976, 32, 3. https://doi.org/10.1016/0040-4020(76)80016-6
dc.relation.references3. Peters J: Synthesis, 1979, 5, 321 https://doi.org/10.1055/s-1979-28668
dc.relation.references4. Galli C., Marotta E., Right P., Rosini G.: J. Org. Chem., 1995, 60, 6624. https://doi.org/10.1021/jo00125a064
dc.relation.references5. Hanessian S., Pham V.: Org. Lett., 2000, 2, 2975. https://doi.org/10.1021/ol000170g
dc.relation.references6. Sibi M., Manyem S.: Tetrahedron, 2000, 56, 8033. https://doi.org/10.1016/S0040-4020(00)00618-9
dc.relation.references7. Ballini R., Bosica G., Fiorini D., Gil M.: Synthesis, 2004, 4, 605. https://doi.org/10.1055/s-2004-815948
dc.relation.references8. Chandrasekhar S., Rambabu C., Shyamsundar T.: Tetrahedron Lett., 2007, 48, 4683. https://doi.org/10.1016/j.tetlet.2007.05.026
dc.relation.references9. Tomohiro T., Takuya K., Tsutomu I.: Tetrahedron Lett., 2000, 41, 10229. https://doi.org/10.1016/S0040-4039(00)01820-7
dc.relation.references10. Spande T., Garraffo H., EdwardsM. et al.: J. Am. Chem. Soc., 1992, 114, 3475. https://doi.org/10.1021/ja00035a048
dc.relation.references11. Taasu K., Mizutani S., Noguchi M. et al.: J. Org. Chem., 2000, 65, 4112. https://doi.org/10.1021/jo000185s
dc.relation.references12. Bergmann E., Ginsburg D., Pappo R.: Org. React. 1959, 10, 179. https://doi.org/10.1002/0471264180.or010.03
dc.relation.references13. DaveyW., Gwilt J.: J. Chem. Soc., 1957, 1015. https://doi.org/10.1039/jr9570001015
dc.relation.references14. Garcia-Raso A., Garcia-Raso J., Campaner B. et al.: Synthesis, 1982, 12, 1037. https://doi.org/10.1055/s-1982-30055
dc.relation.references15. Ganesh S., Sarkar A.: Tetrahedron Lett., 1991, 32, 1085. https://doi.org/10.1016/S0040-4039(00)74494-7
dc.relation.references16. Li T-J., Cui Y., Chen G-F. et al.: Synth. Commun., 2003, 33, 353. https://doi.org/10.1081/SCC-120015762
dc.relation.references17. Ye W-P., Xu J-Y., Tan C-T., Tan C-H.: Tetrahedron Lett., 2005, 46, 6875. https://doi.org/10.1016/j.tetlet.2005.08.010
dc.relation.references18. ZahouilyM., Bahlaodhuan B., Aadil M. et al.: Org. Pro. Res. Develop., 2004, 8, 275. https://doi.org/10.1021/op034161+
dc.relation.references19. Ma Y-M., Zhang Y-M.: Synth. Commun., 2002, 32, 819. https://doi.org/10.1081/SCC-120002689
dc.relation.references20. Meciarova M., Toma S.: Chem. Eur. J., 2007, 13, 1268. https://doi.org/10.1002/chem.200600870
dc.relation.references21. Gu H., Li J., Qu G. et al.: Chirality, 2011, 23, 514. https://doi.org/10.1002/chir.20956
dc.relation.references22. Rosnati V., Saba A., Salimbeni A.: Tetrahedron Lett., 1981, 22, 167. https://doi.org/10.1016/0040-4039(81)80178-5
dc.relation.references23. Toda F., Takumi H., Nagami M., Tanaka K.: Hetrocycles, 1998, 47, 469. https://doi.org/10.3987/COM-97-S(N)77
dc.relation.references24. Bram G., Sansoulet J., Galons H., MiocqueM.: Synth. Commun., 1988, 18, 367. https://doi.org/10.1080/00397918808064000
dc.relation.references25. Kim D., Huh S., Kim S.: Tetrahedron Lett., 2001, 42, 6299. https://doi.org/10.1016/S0040-4039(01)01237-0
dc.relation.references26. Dere R., Pal R., Patil P., SalunkheM.: Tetrahedron Lett., 2003, 44, 5351. https://doi.org/10.1016/S0040-4039(03)01198-5
dc.relation.references27. Loupy P.: Top. Curr. Chem., 1999, 206, 153. https://doi.org/10.1007/3-540-48664-X_7
dc.relation.references28. Rao H., Jothilingam S.: J. Chem. Sci., 2005, 117, 323. https://doi.org/10.1007/BF02708445
dc.relation.references29. Li J., Cui Y., Chen G. et al.: Synth. Commun., 2003, 33, 353. https://doi.org/10.1081/SCC-120015762
dc.relation.references30. Bansal S., Kumar Y., Pippal P. et al.: New J. Chem., 2017, 41, 2668. https://doi.org/10.1039/C6NJ03701A
dc.relation.references31. Pippal P., Singh P.: Orient. J. Chem., 2017, 33, 1736. https://doi.org/10.13005/ojc/330418
dc.relation.references32. SharmaM., Singh P., Bharadwaj P.: J. Mol. Catal. A: Chem., 2011, 342, 6. https://doi.org/10.1016/j.molcata.2011.04.016
dc.relation.references33. Liang D., Xin X., Gao H. et al.: Chem. Res. Chinese Univ., 2009, 25, 169.
dc.relation.references34. Ying A., Chen X., Wu C. et al.: Synth. Commun., 2012, 42, 3455. https://doi.org/10.1080/00397911.2011.584260
dc.relation.references35. Guo H., Li J., Qu G. et al.: Chirality, 2011, 23, 514. https://doi.org/10.1002/chir.20956
dc.relation.references36. Shen Z., Gu D., Yang J., Ji S.: Synth. Commun., 2011, 41, 851. https://doi.org/10.1080/00397911003707006
dc.relation.references37. Mohammad R., Najmedin A., Elham A., Forogh E.: J. Mol. Catal. A, 2008, 292, 44. https://doi.org/10.1016/j.molcata.2008.06.003
dc.relation.references38. Shi J., WangM., He L. et al.: Chem. Commun., 2009, 4711. https://doi.org/10.1039/b908632c
dc.relation.references39. Sakthivel V., Kasi P.: Ind. J. Chem. B., 2010, 49, 469.
dc.relation.referencesen1. Gawley R., Synthesis, 1976, 12, 777. https://doi.org/10.1055/s-1976-24200
dc.relation.referencesen2. JungM., Tetrahedron, 1976, 32, 3. https://doi.org/10.1016/0040-4020(76)80016-6
dc.relation.referencesen3. Peters J: Synthesis, 1979, 5, 321 https://doi.org/10.1055/s-1979-28668
dc.relation.referencesen4. Galli C., Marotta E., Right P., Rosini G., J. Org. Chem., 1995, 60, 6624. https://doi.org/10.1021/jo00125a064
dc.relation.referencesen5. Hanessian S., Pham V., Org. Lett., 2000, 2, 2975. https://doi.org/10.1021/ol000170g
dc.relation.referencesen6. Sibi M., Manyem S., Tetrahedron, 2000, 56, 8033. https://doi.org/10.1016/S0040-4020(00)00618-9
dc.relation.referencesen7. Ballini R., Bosica G., Fiorini D., Gil M., Synthesis, 2004, 4, 605. https://doi.org/10.1055/s-2004-815948
dc.relation.referencesen8. Chandrasekhar S., Rambabu C., Shyamsundar T., Tetrahedron Lett., 2007, 48, 4683. https://doi.org/10.1016/j.tetlet.2007.05.026
dc.relation.referencesen9. Tomohiro T., Takuya K., Tsutomu I., Tetrahedron Lett., 2000, 41, 10229. https://doi.org/10.1016/S0040-4039(00)01820-7
dc.relation.referencesen10. Spande T., Garraffo H., EdwardsM. et al., J. Am. Chem. Soc., 1992, 114, 3475. https://doi.org/10.1021/ja00035a048
dc.relation.referencesen11. Taasu K., Mizutani S., Noguchi M. et al., J. Org. Chem., 2000, 65, 4112. https://doi.org/10.1021/jo000185s
dc.relation.referencesen12. Bergmann E., Ginsburg D., Pappo R., Org. React. 1959, 10, 179. https://doi.org/10.1002/0471264180.or010.03
dc.relation.referencesen13. DaveyW., Gwilt J., J. Chem. Soc., 1957, 1015. https://doi.org/10.1039/jr9570001015
dc.relation.referencesen14. Garcia-Raso A., Garcia-Raso J., Campaner B. et al., Synthesis, 1982, 12, 1037. https://doi.org/10.1055/s-1982-30055
dc.relation.referencesen15. Ganesh S., Sarkar A., Tetrahedron Lett., 1991, 32, 1085. https://doi.org/10.1016/S0040-4039(00)74494-7
dc.relation.referencesen16. Li T-J., Cui Y., Chen G-F. et al., Synth. Commun., 2003, 33, 353. https://doi.org/10.1081/SCC-120015762
dc.relation.referencesen17. Ye W-P., Xu J-Y., Tan C-T., Tan C-H., Tetrahedron Lett., 2005, 46, 6875. https://doi.org/10.1016/j.tetlet.2005.08.010
dc.relation.referencesen18. ZahouilyM., Bahlaodhuan B., Aadil M. et al., Org. Pro. Res. Develop., 2004, 8, 275. https://doi.org/10.1021/op034161+
dc.relation.referencesen19. Ma Y-M., Zhang Y-M., Synth. Commun., 2002, 32, 819. https://doi.org/10.1081/SCC-120002689
dc.relation.referencesen20. Meciarova M., Toma S., Chem. Eur. J., 2007, 13, 1268. https://doi.org/10.1002/chem.200600870
dc.relation.referencesen21. Gu H., Li J., Qu G. et al., Chirality, 2011, 23, 514. https://doi.org/10.1002/chir.20956
dc.relation.referencesen22. Rosnati V., Saba A., Salimbeni A., Tetrahedron Lett., 1981, 22, 167. https://doi.org/10.1016/0040-4039(81)80178-5
dc.relation.referencesen23. Toda F., Takumi H., Nagami M., Tanaka K., Hetrocycles, 1998, 47, 469. https://doi.org/10.3987/COM-97-S(N)77
dc.relation.referencesen24. Bram G., Sansoulet J., Galons H., MiocqueM., Synth. Commun., 1988, 18, 367. https://doi.org/10.1080/00397918808064000
dc.relation.referencesen25. Kim D., Huh S., Kim S., Tetrahedron Lett., 2001, 42, 6299. https://doi.org/10.1016/S0040-4039(01)01237-0
dc.relation.referencesen26. Dere R., Pal R., Patil P., SalunkheM., Tetrahedron Lett., 2003, 44, 5351. https://doi.org/10.1016/S0040-4039(03)01198-5
dc.relation.referencesen27. Loupy P., Top. Curr. Chem., 1999, 206, 153. https://doi.org/10.1007/3-540-48664-X_7
dc.relation.referencesen28. Rao H., Jothilingam S., J. Chem. Sci., 2005, 117, 323. https://doi.org/10.1007/BF02708445
dc.relation.referencesen29. Li J., Cui Y., Chen G. et al., Synth. Commun., 2003, 33, 353. https://doi.org/10.1081/SCC-120015762
dc.relation.referencesen30. Bansal S., Kumar Y., Pippal P. et al., New J. Chem., 2017, 41, 2668. https://doi.org/10.1039/P.6NJ03701A
dc.relation.referencesen31. Pippal P., Singh P., Orient. J. Chem., 2017, 33, 1736. https://doi.org/10.13005/ojc/330418
dc.relation.referencesen32. SharmaM., Singh P., Bharadwaj P., J. Mol. Catal. A: Chem., 2011, 342, 6. https://doi.org/10.1016/j.molcata.2011.04.016
dc.relation.referencesen33. Liang D., Xin X., Gao H. et al., Chem. Res. Chinese Univ., 2009, 25, 169.
dc.relation.referencesen34. Ying A., Chen X., Wu C. et al., Synth. Commun., 2012, 42, 3455. https://doi.org/10.1080/00397911.2011.584260
dc.relation.referencesen35. Guo H., Li J., Qu G. et al., Chirality, 2011, 23, 514. https://doi.org/10.1002/chir.20956
dc.relation.referencesen36. Shen Z., Gu D., Yang J., Ji S., Synth. Commun., 2011, 41, 851. https://doi.org/10.1080/00397911003707006
dc.relation.referencesen37. Mohammad R., Najmedin A., Elham A., Forogh E., J. Mol. Catal. A, 2008, 292, 44. https://doi.org/10.1016/j.molcata.2008.06.003
dc.relation.referencesen38. Shi J., WangM., He L. et al., Chem. Commun., 2009, 4711. https://doi.org/10.1039/b908632c
dc.relation.referencesen39. Sakthivel V., Kasi P., Ind. J. Chem. B., 2010, 49, 469.
dc.relation.urihttps://doi.org/10.1055/s-1976-24200
dc.relation.urihttps://doi.org/10.1016/0040-4020(76)80016-6
dc.relation.urihttps://doi.org/10.1055/s-1979-28668
dc.relation.urihttps://doi.org/10.1021/jo00125a064
dc.relation.urihttps://doi.org/10.1021/ol000170g
dc.relation.urihttps://doi.org/10.1016/S0040-4020(00)00618-9
dc.relation.urihttps://doi.org/10.1055/s-2004-815948
dc.relation.urihttps://doi.org/10.1016/j.tetlet.2007.05.026
dc.relation.urihttps://doi.org/10.1016/S0040-4039(00)01820-7
dc.relation.urihttps://doi.org/10.1021/ja00035a048
dc.relation.urihttps://doi.org/10.1021/jo000185s
dc.relation.urihttps://doi.org/10.1002/0471264180.or010.03
dc.relation.urihttps://doi.org/10.1039/jr9570001015
dc.relation.urihttps://doi.org/10.1055/s-1982-30055
dc.relation.urihttps://doi.org/10.1016/S0040-4039(00)74494-7
dc.relation.urihttps://doi.org/10.1081/SCC-120015762
dc.relation.urihttps://doi.org/10.1016/j.tetlet.2005.08.010
dc.relation.urihttps://doi.org/10.1021/op034161+
dc.relation.urihttps://doi.org/10.1081/SCC-120002689
dc.relation.urihttps://doi.org/10.1002/chem.200600870
dc.relation.urihttps://doi.org/10.1002/chir.20956
dc.relation.urihttps://doi.org/10.1016/0040-4039(81)80178-5
dc.relation.urihttps://doi.org/10.3987/COM-97-S(N)77
dc.relation.urihttps://doi.org/10.1080/00397918808064000
dc.relation.urihttps://doi.org/10.1016/S0040-4039(01)01237-0
dc.relation.urihttps://doi.org/10.1016/S0040-4039(03)01198-5
dc.relation.urihttps://doi.org/10.1007/3-540-48664-X_7
dc.relation.urihttps://doi.org/10.1007/BF02708445
dc.relation.urihttps://doi.org/10.1039/C6NJ03701A
dc.relation.urihttps://doi.org/10.13005/ojc/330418
dc.relation.urihttps://doi.org/10.1016/j.molcata.2011.04.016
dc.relation.urihttps://doi.org/10.1080/00397911.2011.584260
dc.relation.urihttps://doi.org/10.1080/00397911003707006
dc.relation.urihttps://doi.org/10.1016/j.molcata.2008.06.003
dc.relation.urihttps://doi.org/10.1039/b908632c
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Bansal S., Singh P., 2019
dc.subjectмагнітні наночастинки MgFe2O4
dc.subjectреакція Міхаеля
dc.subjectгетерогенний каталізатор
dc.subjectMgFe2O4 MNP’s
dc.subjectMichael addition
dc.subjectheterogeneous catalyst
dc.titleAn efficient solvent free microwave assisted MgFe2O4 magnetic nanoparticles catalyzed green protocol towards Michael addition
dc.title.alternativeОброблені мікрохвилями у відсутності розчинника магнітні наночастинки MgFe2O4 як ефективний каталізатор реакції Міхаеля
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v13n1_Bansal_S-An_efficient_solvent_free_18-22.pdf
Size:
247.13 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v13n1_Bansal_S-An_efficient_solvent_free_18-22__COVER.png
Size:
530.36 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.96 KB
Format:
Plain Text
Description: