Robust approach for blind separation of noisy mixtures of independent and dependent sources
dc.citation.epage | 769 | |
dc.citation.issue | 4 | |
dc.citation.spage | 761 | |
dc.contributor.affiliation | Університет Султана Мулая Слімана | |
dc.contributor.affiliation | University Sultan Moulay Slimane | |
dc.contributor.author | Оурдоу, А. | |
dc.contributor.author | Газдалі, А. | |
dc.contributor.author | Лагріб, А. | |
dc.contributor.author | Метран, А. | |
dc.contributor.author | Ourdou, A. | |
dc.contributor.author | Ghazdali, A. | |
dc.contributor.author | Laghrib, A. | |
dc.contributor.author | Metrane, A. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-11-01T07:49:31Z | |
dc.date.available | 2023-11-01T07:49:31Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | У цій роботі представлено новий метод сліпого розділення джерел (СРД), який обробляє суміші шумів незалежних/залежних джерел. Це досягається мінімізацією критерію, що поєднує розділюючу частину (на основі розбіжності Кульбака–Лейблера для залежних або незалежних джерел) з частиною регуляризації, яка використовує двосторонню повну варіацію (ДПВ) з метою зниження шуму в спостереженнях. Запропонований алгоритм використовує алгоритм primal-dual для видалення шуму, тоді як метод градієнтного спуску реалізується для пошуку джерел сигналу. Представлений алгоритм довів свою ефективність та результативність, і навіть більше того, перевершив існуючі стандартні алгоритми СРД. | |
dc.description.abstract | In this paper, a new Blind Source Separation (BSS) method that handles mixtures of noisy independent/dependent sources is introduced. We achieve that by minimizing a criterion that fuses a separating part, based on Kullback–Leibler divergence for either dependent or independent sources, with a regularization part that employs the bilateral total variation (BTV) for the purpose of denoising the observations. The proposed algorithm utilizes a primal-dual algorithm to remove the noise, while a gradient descent method is implemented to retrieve the signal sources. Our algorithm has shown its effectiveness and efficiency and also surpassed the standard existing BSS algorithms. | |
dc.format.extent | 761-769 | |
dc.format.pages | 9 | |
dc.identifier.citation | Robust approach for blind separation of noisy mixtures of independent and dependent sources / A. Ourdou, A. Ghazdali, A. Laghrib, A. Metrane // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 761–769. | |
dc.identifier.citationen | Robust approach for blind separation of noisy mixtures of independent and dependent sources / A. Ourdou, A. Ghazdali, A. Laghrib, A. Metrane // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 761–769. | |
dc.identifier.doi | 10.23939/mmc2021.04.761 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60440 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 4 (8), 2021 | |
dc.relation.references | [1] Comon P. Independent component analysis, a new concept? Signal Processing. 36 (3), 287–314 (1994). | |
dc.relation.references | [2] Mansour A., Jutten C. A direct solution for blind separation of sources. IEEE Transactions on Signal Processing. 44 (3), 746–748 (1996). | |
dc.relation.references | [3] Taleb A., Jutten C. Entropy optimization. Artificial Neural Networks – ICANN’97. 529–534 (1997). | |
dc.relation.references | [4] Belouchrani A., Abed-Meraim K., Cardoso J.-F., Moulines E. A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing. 45 (2), 434–444 (1997). | |
dc.relation.references | [5] Pesquet J.-C., Moreau E. Cumulant-based independence measures for linear mixtures. IEEE Trans. Inform. Theory. 47 (5), 1947–1956 (2001). | |
dc.relation.references | [6] Cardoso J.-F. Blind signal separation: statistical principles. Proceedings of the IEEE. 86 (10), 2009–2025 (1998). | |
dc.relation.references | [7] Novey M., Adali T. ICA by maximization of nongaussianity using complex functions. 2005 IEEE Workshop on Machine Learning for Signal Processing. 21–26 (2005). | |
dc.relation.references | [8] Pham D. Mutual information approach to blind separation of stationary sources. IEEE Transactions on Information Theory. 48 (7), 1935–1946 (2002). | |
dc.relation.references | [9] Keziou A., Fenniri H., Ould Mohamed M., Delaunay G. S´eparations aveugle de sources par minimisation des α-divergences. XXIIe colloque GRETSI, Dijon, 8–11 septembre 2009. | |
dc.relation.references | [10] Keziou A., Fenniri H., Ghazdali A., Moreau E. New blind source separation method of independent/dependent sources. Signal Processing. 104, 319–324 (2014). | |
dc.relation.references | [11] Ghazdali A., Hakim A., Laghrib A., Mamouni N., Raghay S. A new method for the extraction of fetal ECG from the dependent abdominal signals using blind source separation and adaptive noise cancellation techniques. Theoretical Biology and Medical Modelling. 12, Article number: 25 (2015). | |
dc.relation.references | [12] Mamouni N., Keziou A., Fenniri H., Ghazdali A., Hakim A. A new convolutive source separation approach for independent/dependent source components. Digital Signal Processing. 100, 102701 (2020). | |
dc.relation.references | [13] Ourdou A., Ghazdali A., Laghrib A., Metrane A. Blind Separation of Instantaneous Mixtures of Independent/Dependent Sources. Circuits, Systems, and Signal Processing. 40, 4428–4451 (2021). | |
dc.relation.references | [14] Ourdou A., Ghazdali A., Metrane A., Hakim M. Digital document image restoration using a blind source separation method based on copulas. In Journal of Physics: Conference Series. 1743, 012034 (2021). | |
dc.relation.references | [15] Belouchrani A., Cichocki A. Robust whitening procedure in blind source separation context. Electronics letters. 36 (24), 2050–2051 (2000). | |
dc.relation.references | [16] Sahmoudi M., Snoussi H., Amin M. G. Robust approach for blind source separation in non-gaussian noise environments. Proceedings of ISCCSP, Marrakesh, Morocco, IEEE/EURASIP (2006). | |
dc.relation.references | [17] El Rhabi M., Fenniri H., Keziou A., Moreau E. A robust algorithm for convolutive blind source separation in presence of noise. Signal Processing. 93 (4), 818–827 (2013). | |
dc.relation.references | [18] Ghazdali A., El Rhabi M., Fenniri H., Hakim A., Keziou A. Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas. Signal Processing. 131, 502–513 (2017). | |
dc.relation.references | [19] Tomasi C., Manduchi R. Bilateral Filtering for Gray and Color Images. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 839–846 (1998). | |
dc.relation.references | [20] Sklar A. Fonctions de r´epartition `a n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris. 8, 229–231 (1959). | |
dc.relation.references | [21] Farsiu S., Robinson D., Elad M., Milanfar P. Fast and Robust Multi-Frame Super-Resolution. IEEE Trans. on Image Processing. 13 (10), 1327–1344 (2003). | |
dc.relation.references | [22] El Mourabit I., El Rhabi M., Hakim A., Laghrib A., Moreau E. A new denoising model for multi-frame super-resolution image reconstruction. Signal Processing. 132, 51–65 (2017). | |
dc.relation.references | [23] Afraites L., Hadri A., Laghrib A. A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. Inverse Problems. 36 (2), 025006 (2019). | |
dc.relation.references | [24] Silverman B. W. Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability, Chapman & Hall, London (1986). | |
dc.relation.references | [25] Gumbel E. J. Bivariate exponential distributions. Journal of the American Statistical Association. 55 (292), 698–707 (1960). | |
dc.relation.references | [26] Morgenstern D. Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungeblatt f¨ur mathematische statistik. 8, 234–235 (1956). | |
dc.relation.references | [27] Clayton D. G. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika. 65 (1), 141–151 (1978). | |
dc.relation.references | [28] Cardoso J. F., Souloumiac A. Blind beamforming for non-gaussian signals. IEE Proceedings F (Radar and Signal Processing). 140 (6), 362–370 (1993). | |
dc.relation.references | [29] Hyv¨arinen A., Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation. 9 (7), 1483–1492 (1997). | |
dc.relation.references | [30] Miller E.-G., Fisher J.-W. III. Independent components analysis by direct entropy minimization, Tech. Rep. UCB/CSD-03-1221, University of California at Berkeley, January 2003. | |
dc.relation.referencesen | [1] Comon P. Independent component analysis, a new concept? Signal Processing. 36 (3), 287–314 (1994). | |
dc.relation.referencesen | [2] Mansour A., Jutten C. A direct solution for blind separation of sources. IEEE Transactions on Signal Processing. 44 (3), 746–748 (1996). | |
dc.relation.referencesen | [3] Taleb A., Jutten C. Entropy optimization. Artificial Neural Networks – ICANN’97. 529–534 (1997). | |
dc.relation.referencesen | [4] Belouchrani A., Abed-Meraim K., Cardoso J.-F., Moulines E. A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing. 45 (2), 434–444 (1997). | |
dc.relation.referencesen | [5] Pesquet J.-C., Moreau E. Cumulant-based independence measures for linear mixtures. IEEE Trans. Inform. Theory. 47 (5), 1947–1956 (2001). | |
dc.relation.referencesen | [6] Cardoso J.-F. Blind signal separation: statistical principles. Proceedings of the IEEE. 86 (10), 2009–2025 (1998). | |
dc.relation.referencesen | [7] Novey M., Adali T. ICA by maximization of nongaussianity using complex functions. 2005 IEEE Workshop on Machine Learning for Signal Processing. 21–26 (2005). | |
dc.relation.referencesen | [8] Pham D. Mutual information approach to blind separation of stationary sources. IEEE Transactions on Information Theory. 48 (7), 1935–1946 (2002). | |
dc.relation.referencesen | [9] Keziou A., Fenniri H., Ould Mohamed M., Delaunay G. S´eparations aveugle de sources par minimisation des α-divergences. XXIIe colloque GRETSI, Dijon, 8–11 septembre 2009. | |
dc.relation.referencesen | [10] Keziou A., Fenniri H., Ghazdali A., Moreau E. New blind source separation method of independent/dependent sources. Signal Processing. 104, 319–324 (2014). | |
dc.relation.referencesen | [11] Ghazdali A., Hakim A., Laghrib A., Mamouni N., Raghay S. A new method for the extraction of fetal ECG from the dependent abdominal signals using blind source separation and adaptive noise cancellation techniques. Theoretical Biology and Medical Modelling. 12, Article number: 25 (2015). | |
dc.relation.referencesen | [12] Mamouni N., Keziou A., Fenniri H., Ghazdali A., Hakim A. A new convolutive source separation approach for independent/dependent source components. Digital Signal Processing. 100, 102701 (2020). | |
dc.relation.referencesen | [13] Ourdou A., Ghazdali A., Laghrib A., Metrane A. Blind Separation of Instantaneous Mixtures of Independent/Dependent Sources. Circuits, Systems, and Signal Processing. 40, 4428–4451 (2021). | |
dc.relation.referencesen | [14] Ourdou A., Ghazdali A., Metrane A., Hakim M. Digital document image restoration using a blind source separation method based on copulas. In Journal of Physics: Conference Series. 1743, 012034 (2021). | |
dc.relation.referencesen | [15] Belouchrani A., Cichocki A. Robust whitening procedure in blind source separation context. Electronics letters. 36 (24), 2050–2051 (2000). | |
dc.relation.referencesen | [16] Sahmoudi M., Snoussi H., Amin M. G. Robust approach for blind source separation in non-gaussian noise environments. Proceedings of ISCCSP, Marrakesh, Morocco, IEEE/EURASIP (2006). | |
dc.relation.referencesen | [17] El Rhabi M., Fenniri H., Keziou A., Moreau E. A robust algorithm for convolutive blind source separation in presence of noise. Signal Processing. 93 (4), 818–827 (2013). | |
dc.relation.referencesen | [18] Ghazdali A., El Rhabi M., Fenniri H., Hakim A., Keziou A. Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas. Signal Processing. 131, 502–513 (2017). | |
dc.relation.referencesen | [19] Tomasi C., Manduchi R. Bilateral Filtering for Gray and Color Images. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 839–846 (1998). | |
dc.relation.referencesen | [20] Sklar A. Fonctions de r´epartition `a n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris. 8, 229–231 (1959). | |
dc.relation.referencesen | [21] Farsiu S., Robinson D., Elad M., Milanfar P. Fast and Robust Multi-Frame Super-Resolution. IEEE Trans. on Image Processing. 13 (10), 1327–1344 (2003). | |
dc.relation.referencesen | [22] El Mourabit I., El Rhabi M., Hakim A., Laghrib A., Moreau E. A new denoising model for multi-frame super-resolution image reconstruction. Signal Processing. 132, 51–65 (2017). | |
dc.relation.referencesen | [23] Afraites L., Hadri A., Laghrib A. A denoising model adapted for impulse and Gaussian noises using a constrained-PDE. Inverse Problems. 36 (2), 025006 (2019). | |
dc.relation.referencesen | [24] Silverman B. W. Density estimation for statistics and data analysis. Monographs on Statistics and Applied Probability, Chapman & Hall, London (1986). | |
dc.relation.referencesen | [25] Gumbel E. J. Bivariate exponential distributions. Journal of the American Statistical Association. 55 (292), 698–707 (1960). | |
dc.relation.referencesen | [26] Morgenstern D. Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungeblatt f¨ur mathematische statistik. 8, 234–235 (1956). | |
dc.relation.referencesen | [27] Clayton D. G. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika. 65 (1), 141–151 (1978). | |
dc.relation.referencesen | [28] Cardoso J. F., Souloumiac A. Blind beamforming for non-gaussian signals. IEE Proceedings F (Radar and Signal Processing). 140 (6), 362–370 (1993). | |
dc.relation.referencesen | [29] Hyv¨arinen A., Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation. 9 (7), 1483–1492 (1997). | |
dc.relation.referencesen | [30] Miller E.-G., Fisher J.-W. III. Independent components analysis by direct entropy minimization, Tech. Rep. UCB/CSD-03-1221, University of California at Berkeley, January 2003. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | сліпе розділення джерел | |
dc.subject | суміші шумів | |
dc.subject | залежні джерела | |
dc.subject | двостороння загальна варіація | |
dc.subject | розбіжність Кульбака–Лейблера | |
dc.subject | blind source separation | |
dc.subject | noisy mixtures | |
dc.subject | dependent sources | |
dc.subject | bilateral total variation | |
dc.subject | Kullback–Leibler divergence | |
dc.title | Robust approach for blind separation of noisy mixtures of independent and dependent sources | |
dc.title.alternative | Надійний підхід до сліпого розділення сумішей шумів незалежних і залежних джерел | |
dc.type | Article |
Files
License bundle
1 - 1 of 1