Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material

dc.citation.epage28
dc.citation.issue1
dc.citation.spage22
dc.contributor.affiliationНацiональний унiверситет “Львiвська полiтехнiка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГнатів, З. Я.
dc.contributor.authorІващук, О. С.
dc.contributor.authorГринчук, Ю. М.
dc.contributor.authorРеутський, В. В.
dc.contributor.authorКоваль, І. З.
dc.contributor.authorВашкурак, Ю. З.
dc.contributor.authorGnativ, Z. Ya.
dc.contributor.authorIvashchuk, O. S.
dc.contributor.authorHrynchuk, Yu. M.
dc.contributor.authorReutskyi, V. V.
dc.contributor.authorKoval, I. Z.
dc.contributor.authorZ, Vashkurak Yu.
dc.date.accessioned2023-03-06T12:28:20Z
dc.date.available2023-03-06T12:28:20Z
dc.date.created2020-01-01
dc.date.issued2020-01-01
dc.description.abstractУ статтi представлено теоретичнi та експериментальнi дослiдження щодо визначення коефiцiєнтiв внутрiшньої дифузiї вологи iз капiлярно-пористих матерiалiв рослинного походження пiд час фiльтрацiйного сушiння бурякового жому, побiчного продукту цукрового виробництва. Для знаходження коефiцiєнта внутрiшньої дифузiї використана модель, що базується на розв’язку диференцiйного рiвняння внутрiшньої дифузiї з вiдповiдними початковими та граничними умовами. Встановлено, що процес сушiння бурякового жому вiдбувається у другому перiодi, а лiмiтуючою стадiєю є внутрiшньодифузiйне масоперенесення.
dc.description.abstractThe article presents the results of theoretical and experimental studies on the determination of the coefficients of internal diffusion of moisture from capillary-porous materials of plant origin during filtration drying, in particular, beet pulp, a by-product of sugar production. A model based on the solution of the internal diffusion differential equation with the corresponding initial and boundary conditions were used to find the internal diffusion coefficient. It is established that the process of the beet pulp drying occurs in the second period, and the limiting stage is the intra-diffusion mass transfer.
dc.format.extent22-28
dc.format.pages7
dc.identifier.citationModeling of internal diffusion mass transfer during filtration drying of capillary-porous material / Gnativ Z. Ya., Ivashchuk O. S., Hrynchuk Yu. M., Reutskyi V. V., Koval I. Z., Vashkurak Yu. Z // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 7. — No 1. — P. 22–28.
dc.identifier.citationenGnativ Z. Ya., Ivashchuk O. S., Hrynchuk Yu. M., Reutskyi V. V., Koval I. Z., Z V. Yu. (2020) Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing (Lviv), vol. 7, no 1, pp. 22-28.
dc.identifier.doiDOI: 10.23939/mmc2020.01.022
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57517
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (7), 2020
dc.relation.references[1] Burdo O. G., Tersiev S. G., Yarovoy I. I., Borshch A. A. Raw material dewatering electromagnetic technologies. Problems of the regional energetics. 1 (18), 36–41 (2012), (in Russian).
dc.relation.references[2] Atamanyuk V., Huzova I., Gnativ Z. Intensification of Drying Process During Activated Carbon Regeneration. Chemistry & Chemical Technology. 12 (2), 263–271 (2018).
dc.relation.references[3] Barna I., Gumnytskyi Y., Atamanyuk V. Intradiffusion Mass Transfer during Drying of Slag Gravel Raw Granule. Chemistry & Chemical Technology. 7 (4), 461–465 (2013).
dc.relation.references[4] Matkivska I., Gumnytskyi Y., Atamanyuk V. Kinetics of Diffusion Mass Transfer during Filtration Drying of Grain Materials. Chemistry & Chemical Technology. 8 (3), 359–363 (2014).
dc.relation.references[5] Frolov V. F. Makrokineticheskij analiz sushki dispersnyh materialov. Sovremennye jenergosberegajushhie teplovye tehnologii (sushka i termovlazhnostnaja obrabotka materialov), I Mezhdunar. nauchnoprakticheskaja konferencija, 25–31 may 2002, Moskva, 2, 7–17 (2002), (in Russian).
dc.relation.references[6] Fadel J. G., DePeters E. J., Arosemena A. Composition and digestibility of beet pulp with and without molasses and dried using three methods. Animal Feed Science and Technology. 86 (1–2), 121–129 (2006).
dc.relation.references[7] Slavjanskij A. A. Promyshlennoe proizvodstvo sahara. Moskva, MGUTU imeni K. G. Razumovskogo(2015), (in Russian).
dc.relation.references[8] Aksu Z., Isoglu I. A. Use of dried sugar beet pulp for binary biosorption of Gemazol Turquoise Blue-G reactive dye and copper(II) ions: Equilibrium modeling. Chemical Engineering Journal. 127 (1–3), 177–188 (2007).
dc.relation.references[9] Reddad Z., G´erente C., Andr`es Y., Ralet M.-C., Thibault J.-F., Cloirec P. L. Ni(II) and Cu(II) binding properties of native and modified sugar beet pulp. Carbohydrate Polymers. 49 (1), 23–31 (2002).
dc.relation.references[10] Castro L., Bl´azquez M. L., Mu˜noz J. A., Gonz´alez F., Garc´ıa–Balboa C., Ballester A. Biosynthesis of gold nanowires using sugar beet pulp. Process Biochemistry. 46 (5), 1076–1082 (2004).
dc.relation.references[11] Atamaniuk V. M., Humnytskyi Ya. M. Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Lviv, Lviv Polytechnic National University (2013), (in Ukrainian).
dc.relation.references[12] Atamaniuk V. M. Hidrodynamika i teplomasoobmin pid chas filtratsiinoho sushinnia dyspersnykh materialiv. DSc Thesis. Lviv (2007), (in Ukrainian).
dc.relation.references[13] Mosiuk M. I. Hidrodynamika i teplo masoobmin pid chas sushinnia podribnenoi «enerhetychnoi» verby v statsionarnomu shari. Phd Thesis. Lviv (2012), (in Ukrainian).
dc.relation.references[14] Barna I. R. Hidrodynamika i teplomasoobmin pid chas filtratsiinoho sushinnia syrovynnykh materialiv shlakovoho hraviiu. Phd Thesis. Lviv (2013), (in Ukrainian).
dc.relation.references[15] Aerov M. E., Todes O. M. Gidravlicheskie i teplovye osnovy raboty apparatov so stacionarnym i kipjashhim zernistym sloem. Leningrad, Himija (1968), (in Russian).
dc.relation.references[16] Atamanyuk V., Gumnitsky Ya. Mass exchange dynamics during second filtration drying period. Chemistry& Chemical Technology. 3 (2), 129–137 (2009).
dc.relation.references[17] Rudobashta S. P., Nuriev N. N. Kinetika nizkotemperaturnoj sushki ozonirovannym vozduhom. Trudy pervoj mezhdunarodnoj nauchno-prakticheskoj konferencii “Sovremennye jenergosberegajushhie teplovye tehnologi (sushka i termovlazhnostnaja obrabotka materialov)”: tr. mezhdunarod. nauch.-praktich. konf. MGAU. 4, 56–59 (2002), (in Russian).
dc.relation.references[18] Lykov A. V. Teorija teploprovodnosti. Moskva, Vysshaja shkola (1967), (in Russian).
dc.relation.referencesen[1] Burdo O. G., Tersiev S. G., Yarovoy I. I., Borshch A. A. Raw material dewatering electromagnetic technologies. Problems of the regional energetics. 1 (18), 36–41 (2012), (in Russian).
dc.relation.referencesen[2] Atamanyuk V., Huzova I., Gnativ Z. Intensification of Drying Process During Activated Carbon Regeneration. Chemistry & Chemical Technology. 12 (2), 263–271 (2018).
dc.relation.referencesen[3] Barna I., Gumnytskyi Y., Atamanyuk V. Intradiffusion Mass Transfer during Drying of Slag Gravel Raw Granule. Chemistry & Chemical Technology. 7 (4), 461–465 (2013).
dc.relation.referencesen[4] Matkivska I., Gumnytskyi Y., Atamanyuk V. Kinetics of Diffusion Mass Transfer during Filtration Drying of Grain Materials. Chemistry & Chemical Technology. 8 (3), 359–363 (2014).
dc.relation.referencesen[5] Frolov V. F. Makrokineticheskij analiz sushki dispersnyh materialov. Sovremennye jenergosberegajushhie teplovye tehnologii (sushka i termovlazhnostnaja obrabotka materialov), I Mezhdunar. nauchnoprakticheskaja konferencija, 25–31 may 2002, Moskva, 2, 7–17 (2002), (in Russian).
dc.relation.referencesen[6] Fadel J. G., DePeters E. J., Arosemena A. Composition and digestibility of beet pulp with and without molasses and dried using three methods. Animal Feed Science and Technology. 86 (1–2), 121–129 (2006).
dc.relation.referencesen[7] Slavjanskij A. A. Promyshlennoe proizvodstvo sahara. Moskva, MGUTU imeni K. G. Razumovskogo(2015), (in Russian).
dc.relation.referencesen[8] Aksu Z., Isoglu I. A. Use of dried sugar beet pulp for binary biosorption of Gemazol Turquoise Blue-G reactive dye and copper(II) ions: Equilibrium modeling. Chemical Engineering Journal. 127 (1–3), 177–188 (2007).
dc.relation.referencesen[9] Reddad Z., G´erente C., Andr`es Y., Ralet M.-C., Thibault J.-F., Cloirec P. L. Ni(II) and Cu(II) binding properties of native and modified sugar beet pulp. Carbohydrate Polymers. 49 (1), 23–31 (2002).
dc.relation.referencesen[10] Castro L., Bl´azquez M. L., Mu˜noz J. A., Gonz´alez F., Garc´ıa–Balboa C., Ballester A. Biosynthesis of gold nanowires using sugar beet pulp. Process Biochemistry. 46 (5), 1076–1082 (2004).
dc.relation.referencesen[11] Atamaniuk V. M., Humnytskyi Ya. M. Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Lviv, Lviv Polytechnic National University (2013), (in Ukrainian).
dc.relation.referencesen[12] Atamaniuk V. M. Hidrodynamika i teplomasoobmin pid chas filtratsiinoho sushinnia dyspersnykh materialiv. DSc Thesis. Lviv (2007), (in Ukrainian).
dc.relation.referencesen[13] Mosiuk M. I. Hidrodynamika i teplo masoobmin pid chas sushinnia podribnenoi "enerhetychnoi" verby v statsionarnomu shari. Phd Thesis. Lviv (2012), (in Ukrainian).
dc.relation.referencesen[14] Barna I. R. Hidrodynamika i teplomasoobmin pid chas filtratsiinoho sushinnia syrovynnykh materialiv shlakovoho hraviiu. Phd Thesis. Lviv (2013), (in Ukrainian).
dc.relation.referencesen[15] Aerov M. E., Todes O. M. Gidravlicheskie i teplovye osnovy raboty apparatov so stacionarnym i kipjashhim zernistym sloem. Leningrad, Himija (1968), (in Russian).
dc.relation.referencesen[16] Atamanyuk V., Gumnitsky Ya. Mass exchange dynamics during second filtration drying period. Chemistry& Chemical Technology. 3 (2), 129–137 (2009).
dc.relation.referencesen[17] Rudobashta S. P., Nuriev N. N. Kinetika nizkotemperaturnoj sushki ozonirovannym vozduhom. Trudy pervoj mezhdunarodnoj nauchno-prakticheskoj konferencii "Sovremennye jenergosberegajushhie teplovye tehnologi (sushka i termovlazhnostnaja obrabotka materialov)": tr. mezhdunarod. nauch.-praktich. konf. MGAU. 4, 56–59 (2002), (in Russian).
dc.relation.referencesen[18] Lykov A. V. Teorija teploprovodnosti. Moskva, Vysshaja shkola (1967), (in Russian).
dc.rights.holder©2020 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectфiльтрацiйне сушiння
dc.subjectбуряковий жом
dc.subjectгiдродинамiка
dc.subjectтепловий агент
dc.subjectдифузiя
dc.subjectмоделювання
dc.subjectfiltration drying
dc.subjectbeet pulp
dc.subjecthydrodynamic
dc.subjectheat agent
dc.subjectdiffusion
dc.subjectmodelling
dc.subject.udc35C10
dc.subject.udc80A20
dc.titleModeling of internal diffusion mass transfer during filtration drying of capillary-porous material
dc.title.alternativeМоделювання внутрішньодифузійного масоперенесення під час фільтраційного сушіння капілярно-пористого матеріалу
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2020v7n1_Gnativ_Z_Ya-Modeling_of_internal_diffusion_22-28.pdf
Size:
935.91 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.97 KB
Format:
Plain Text
Description: