Degenerate elliptic problem with singular gradient lower order term and variable exponents

dc.citation.epage146
dc.citation.issue1
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage133
dc.contributor.affiliationАлжирський університет
dc.contributor.affiliationUniversity of Algiers
dc.contributor.authorЗуатіні, М. А.
dc.contributor.authorМохтарі, Ф.
dc.contributor.authorХеліфі, Х.
dc.contributor.authorZouatini, M. A.
dc.contributor.authorMokhtari, F.
dc.contributor.authorKhelifi, H.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:54:48Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій статті доводиться існування та регулярність слабких розв’язків для класу нелінійних еліптичних рівнянь із виродженою коерцитивною силою та сингулярними членами нижчого порядку з природним зростанням відносно за градієнтом і Lm(·)(m(x) > 1) даними. Функціональна постановка включає простори Лебега–Соболева зі змінними показниками.
dc.description.abstractIn this paper, we prove the existence and regularity of weak solutions for a class of nonlinear elliptic equations with degenerate coercivity and singular lower-order terms with natural growth with respect to the gradient and Lm(·)(m(x) > 1) data. The functional setting involves Lebesgue–Sobolev spaces with variable exponents.
dc.format.extent133-146
dc.format.pages14
dc.identifier.citationZouatini M. A. Degenerate elliptic problem with singular gradient lower order term and variable exponents / M. A. Zouatini, F. Mokhtari, H. Khelifi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 133–146.
dc.identifier.citationenZouatini M. A. Degenerate elliptic problem with singular gradient lower order term and variable exponents / M. A. Zouatini, F. Mokhtari, H. Khelifi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 133–146.
dc.identifier.doi10.23939/mmc2023.01.133
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63485
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 1 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 1 (10), 2023
dc.relation.references[1] Arcoya D., Barile S., Mart´inez–Aparicio P. J. Singular quasilinear equations with quadratic growth in the gradient without sign condition. Journal of Mathematical Analysis and Applications. 350 (1), 401–408 (2009).
dc.relation.references[2] Boccardo L. Problems with singular and quadratic gradient lower order terms. ESAIM: Control, Optimisation and Calculus of Variations. 14 (3), 411–426 (2008).
dc.relation.references[3] Giachetti D., Murat F. An elliptic problem with a lower order term having singular behaviour. Bollettino Della Unione Matematica Italiana. 2, 349–370 (2009).
dc.relation.references[4] Khelifi H., Elhadfi Y. Nonlinear elliptic equations with variable exponents involving singular nonlinearity. Mathematical Modeling and Computing. 8 (4), 705–715 (2021).
dc.relation.references[5] Zhan C. Entropy solutions for nonlinear elliptic equations with variable exponents. Electronic Journal of Differential Equations. 2014 (92), 1–14 (2014).
dc.relation.references[6] Alvino A., Boccardo L., Ferone V., Orsina L., Trombetti G. Existence results for nonlinear elliptic equations with degenerate coercivity. Annali di Matematica Pura ed Applicata. 182 (1), 53–79 (2003).
dc.relation.references[7] Boccardo L., Dall’ Aglio A., Orsina L. Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Sem. Mat. Fis. Univ. Modena. 46, 51–81 (1998).
dc.relation.references[8] Boccardo L. Some elliptic problems with degenerate coercivity. Advanced Nonlinear Studies. 6 (1), 1–12 (2006).
dc.relation.references[9] Croce G. The regularizing effects of some lower order terms on the solutions in an elliptic equation with degenerate coercivity. Rendiconti di Matematica e delle sue Applicazioni. 27, 299–314 (2007).
dc.relation.references[10] Boccardo L. Quasilinear elliptic equations with natural growth terms: the regularizing effects of lower order terms. J. Nonlin. Conv. Anal. 7 (1), 355–365 (2006).
dc.relation.references[11] Croce G. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete and Continuous Dynamical Systems – S. 5 (3), 507–730 (2012).
dc.relation.references[12] Khelifi H. Existence and regularity for solution to a degenerate problem with singular gradient lower order term. Moroccan Journal of Pure and Applied Analysis. 8 (3), 310–327 (2022).
dc.relation.references[13] Carmona J., Mart´inez–Aparicio P. J., Rossi J. D. A singular elliptic equation with natural growth in the gradient and a variable exponent. Nonlinear Differential Equations and Applications. 22 (6), 1935–1948 (2015).
dc.relation.references[14] Fan X. L., Shen J., Zhao D. Sobolev embedding theorems for spaces W m,p(x) (Ω). Journal of Mathematical Analysis and Applications. 262 (2), 749–760 (2001).
dc.relation.references[15] Diening L., Harjulehto T., H¨ast¨o P., Ruzicka M. Lebesque and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, Vol. 2017. Springer Verlag, Berlin (2011).
dc.relation.references[16] Carmona J., Mart´inez–Aparicio P. J., Su´arez A. Existence and nonexistence of positive solutions for nonlinear elliptic singular equations with natural growth. Nonlinear Analysis: Theory, Methods & Applications. 89, 157–169 (2013).
dc.relation.references[17] Arcoya D., Boccardo L., Leonori T., Porretta A. Some elliptic problems with singular natural growth lower order terms. Journal of Differential Equations. 249 (11), 2771–2795 (2010).
dc.relation.references[18] Carmona J., Mart´inez–Aparicio P. J. A Singular Semilinear Elliptic Equation with a Variable Exponent. Advanced Nonlinear Studies. 16 (3), 1935–1948 (2016).
dc.relation.references[19] Murat F., Bensoussan A., Boccardo L. On a nonlinear partial differential equation having natural growth terms and unbounded solutions. Annales de l’Institut Henri Poincar´e. Analyse Non Lin´eaire. 5 (4), 347–364 (1988).
dc.relation.references[20] Boccardo L., Murat F., Puel J.-P. L∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM Journal on Mathematical Analysis. 23 (2), 326–333 (1992).
dc.relation.references[21] Lions J. L. Quelques m´ethodes de r´esolution des probl`eemes aux limites. Dunod. Paris (1969).
dc.relation.references[22] Zhang Q. A strong maximum principle for differential equations with nonstandard p(x)-growth conditions. Journal of Mathematical Analysis and Applications. 312 (1), 24–32 (2005).
dc.relation.references[23] Wolanski N. Local bounds, Harnack’s inequality and H¨older continuity for divergence type elliptic equations with non-standard growth. Revista De La Uni´on Matem´atica Argentina. 56 (1), 73–105 (2015).
dc.relation.referencesen[1] Arcoya D., Barile S., Mart´inez–Aparicio P. J. Singular quasilinear equations with quadratic growth in the gradient without sign condition. Journal of Mathematical Analysis and Applications. 350 (1), 401–408 (2009).
dc.relation.referencesen[2] Boccardo L. Problems with singular and quadratic gradient lower order terms. ESAIM: Control, Optimisation and Calculus of Variations. 14 (3), 411–426 (2008).
dc.relation.referencesen[3] Giachetti D., Murat F. An elliptic problem with a lower order term having singular behaviour. Bollettino Della Unione Matematica Italiana. 2, 349–370 (2009).
dc.relation.referencesen[4] Khelifi H., Elhadfi Y. Nonlinear elliptic equations with variable exponents involving singular nonlinearity. Mathematical Modeling and Computing. 8 (4), 705–715 (2021).
dc.relation.referencesen[5] Zhan C. Entropy solutions for nonlinear elliptic equations with variable exponents. Electronic Journal of Differential Equations. 2014 (92), 1–14 (2014).
dc.relation.referencesen[6] Alvino A., Boccardo L., Ferone V., Orsina L., Trombetti G. Existence results for nonlinear elliptic equations with degenerate coercivity. Annali di Matematica Pura ed Applicata. 182 (1), 53–79 (2003).
dc.relation.referencesen[7] Boccardo L., Dall’ Aglio A., Orsina L. Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Sem. Mat. Fis. Univ. Modena. 46, 51–81 (1998).
dc.relation.referencesen[8] Boccardo L. Some elliptic problems with degenerate coercivity. Advanced Nonlinear Studies. 6 (1), 1–12 (2006).
dc.relation.referencesen[9] Croce G. The regularizing effects of some lower order terms on the solutions in an elliptic equation with degenerate coercivity. Rendiconti di Matematica e delle sue Applicazioni. 27, 299–314 (2007).
dc.relation.referencesen[10] Boccardo L. Quasilinear elliptic equations with natural growth terms: the regularizing effects of lower order terms. J. Nonlin. Conv. Anal. 7 (1), 355–365 (2006).
dc.relation.referencesen[11] Croce G. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete and Continuous Dynamical Systems – S. 5 (3), 507–730 (2012).
dc.relation.referencesen[12] Khelifi H. Existence and regularity for solution to a degenerate problem with singular gradient lower order term. Moroccan Journal of Pure and Applied Analysis. 8 (3), 310–327 (2022).
dc.relation.referencesen[13] Carmona J., Mart´inez–Aparicio P. J., Rossi J. D. A singular elliptic equation with natural growth in the gradient and a variable exponent. Nonlinear Differential Equations and Applications. 22 (6), 1935–1948 (2015).
dc.relation.referencesen[14] Fan X. L., Shen J., Zhao D. Sobolev embedding theorems for spaces W m,p(x) (Ω). Journal of Mathematical Analysis and Applications. 262 (2), 749–760 (2001).
dc.relation.referencesen[15] Diening L., Harjulehto T., H¨ast¨o P., Ruzicka M. Lebesque and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, Vol. 2017. Springer Verlag, Berlin (2011).
dc.relation.referencesen[16] Carmona J., Mart´inez–Aparicio P. J., Su´arez A. Existence and nonexistence of positive solutions for nonlinear elliptic singular equations with natural growth. Nonlinear Analysis: Theory, Methods & Applications. 89, 157–169 (2013).
dc.relation.referencesen[17] Arcoya D., Boccardo L., Leonori T., Porretta A. Some elliptic problems with singular natural growth lower order terms. Journal of Differential Equations. 249 (11), 2771–2795 (2010).
dc.relation.referencesen[18] Carmona J., Mart´inez–Aparicio P. J. A Singular Semilinear Elliptic Equation with a Variable Exponent. Advanced Nonlinear Studies. 16 (3), 1935–1948 (2016).
dc.relation.referencesen[19] Murat F., Bensoussan A., Boccardo L. On a nonlinear partial differential equation having natural growth terms and unbounded solutions. Annales de l’Institut Henri Poincar´e. Analyse Non Lin´eaire. 5 (4), 347–364 (1988).
dc.relation.referencesen[20] Boccardo L., Murat F., Puel J.-P. L∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM Journal on Mathematical Analysis. 23 (2), 326–333 (1992).
dc.relation.referencesen[21] Lions J. L. Quelques m´ethodes de r´esolution des probl`eemes aux limites. Dunod. Paris (1969).
dc.relation.referencesen[22] Zhang Q. A strong maximum principle for differential equations with nonstandard p(x)-growth conditions. Journal of Mathematical Analysis and Applications. 312 (1), 24–32 (2005).
dc.relation.referencesen[23] Wolanski N. Local bounds, Harnack’s inequality and H¨older continuity for divergence type elliptic equations with non-standard growth. Revista De La Uni´on Matem´atica Argentina. 56 (1), 73–105 (2015).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectвироджена задача
dc.subjectсингулярний член
dc.subjectрегулярний розв’язок
dc.subjectпринцип порівняння
dc.subjectнерівність Гарнака
dc.subjectgenerate problem
dc.subjectsingular term
dc.subjectregularity solution
dc.subjectthe comparison principle
dc.subjectHarnack inequality
dc.titleDegenerate elliptic problem with singular gradient lower order term and variable exponents
dc.title.alternativeВироджена еліптична задача зі сингулярним градієнтом нижчого порядку та змінним показником
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n1_Zouatini_M_A-Degenerate_elliptic_133-146.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n1_Zouatini_M_A-Degenerate_elliptic_133-146__COVER.png
Size:
297.82 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: