The evolution of geometric Robertson–Schr¨odinger uncertainty principle for spin 1 system
dc.citation.epage | 49 | |
dc.citation.issue | 1 | |
dc.citation.spage | 36 | |
dc.contributor.affiliation | Університет Путра Малайзія | |
dc.contributor.affiliation | Universiti Putra Malaysia | |
dc.contributor.author | Умаір, Х. | |
dc.contributor.author | Зануддін, Х. | |
dc.contributor.author | Чан, К. Т. | |
dc.contributor.author | Ш. К. Саід Хусейн | |
dc.contributor.author | Umair, H. | |
dc.contributor.author | Zainuddin, H. | |
dc.contributor.author | Chan, K. T. | |
dc.contributor.author | Sh. K. Said Husain | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-12-13T09:11:08Z | |
dc.date.available | 2023-12-13T09:11:08Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | Геометрична квантова механіка — це математичний опис, який показує, як квантова теорія може бути виражена у термінах гамільтонової динаміки фазового простору. Стани є точками в комплексному проективному просторі Гільберта, спостережувані є дійсними функціями у цьому просторі, а гамільтоновий потік визначається рівнянням Шредінгера у цьому описі. Питання вираження принципа невизначеності на геометричній мові нещодавно стало центром значних досліджень у геометричній квантовій механіці. Було показано, що принцип невизначеності Робертсона–Шедінгера, який є більш сильною версією співвідношення невизначеності, може бути визначений з точки зору симплектичної форми та ріманівської метрики. На основі цього формулювання досліджуємо динамічну поведінку співвідношення невизначеності для системи зі спіном 1. Показуємо, що для гамільтонового потоку принципи невизначеності Робертсона–Шредінгера не є інваріантними. Це пояснюється тим, що, на відміну від симплектичної області, ріманова метрика не є інваріантною для гамільтонового потоку у процесі еволюці | |
dc.description.abstract | Geometric Quantum Mechanics is a mathematical framework that shows how quantum theory may be expressed in terms of Hamiltonian phase-space dynamics. The states are points in complex projective Hilbert space, the observables are real valued functions on the space, and the Hamiltonian flow is specified by the Schr¨odinger equation in this framework. The quest to express the uncertainty principle in geometrical language has recently become the focus of significant research in geometric quantum mechanics. One has demonstrated that the Robertson–Schr¨odinger uncertainty principle, which is a stronger version of the uncertainty relation, can be defined in terms of symplectic form and Riemannian metric. On the basis of this formulation, we study the dynamical behavior of the uncertainty relation for the spin 1 system in this work. We show that under Hamiltonian flow, the Robertson–Schr¨odinger uncertainty principles are not invariant. This is because, unlike the symplectic area, the Riemannian metric is not invariant under Hamiltonian flow throughout the evolution process. | |
dc.format.extent | 36-49 | |
dc.format.pages | 14 | |
dc.identifier.citation | The evolution of geometric Robertson–Schr¨odinger uncertainty principle for spin 1 system / H. Umair, H. Zainuddin, K. T. Chan, Sh. K. Said Husain // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 36–49. | |
dc.identifier.citationen | The evolution of geometric Robertson–Schr¨odinger uncertainty principle for spin 1 system / H. Umair, H. Zainuddin, K. T. Chan, Sh. K. Said Husain // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 36–49. | |
dc.identifier.doi | 10.23939/mmc2022.01.036 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60553 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (9), 2022 | |
dc.relation.references | [1] Heslot A. Quantum mechanics as a classical theory. Physical Review D. 31 (6), 1341–1348 (1985). | |
dc.relation.references | [2] Varadarajan V. S. Boolean Algebras on a Classical Phase Space. In: Geometry of Quantum Theory. Vol. 1. Springer, New York (1968). | |
dc.relation.references | [3] Kibble T. W. B. Geometrization of quantum mechanics. Communications in Mathematical Physics. 65, 189–201 (1979). | |
dc.relation.references | [4] Cirelli R., Lanzavecchia P. Hamiltonian vector fields in quantum mechanics. II Nuovo Cimento B. 79, 271–283 (1984). | |
dc.relation.references | [5] Ashtekar A., Schilling T. A. Geometry of quantum mechanics. AIP Conference Proceedings. 342 (1), 471–478 (1995). | |
dc.relation.references | [6] Anandan J. A Geometric Approach to Quantum Mechanics. Foundations of Physics. 21, 1265–1284 (1991). | |
dc.relation.references | [7] Brody D. C., Hughston L. P. Geometric quantum mechanics. Journal of Geometry and Physics. 38 (1), 19–53 (2001). | |
dc.relation.references | [8] Bengtsson I., Brannlund J., Zyczkowski K. CPn, or, Entanglement Illustrated. International Journal of Modern Physics A. 17 (31), 4675–4695 (2002). | |
dc.relation.references | [9] Chru´sci´nski D., Jamio lkowski A. Geometric Phases in Classical and Quantum Mechanics. Progress in Mathematical Physics. Vol. 36 (2004). | |
dc.relation.references | [10] Benvegn`u A., Sansonetto N., Spera M. Remarks on geometric quantum mechanics. Journal of Geometry and Physics. 51 (2), 229–243 (2004). | |
dc.relation.references | [11] Chru´sci´nski D. Geometric Aspects of Quantum Mechanics and Quantum Entanglement. Journal of Physics: Conference Series. 30, 9–16 (2006). | |
dc.relation.references | [12] Bengtsson I., Zyczkowski K. Geometry of Quantum States: An Introduction to Quantum Entanglement. United Kingdom, Cambridge University Press (2006). | |
dc.relation.references | [13] Marmo G., Volkert G. Geometrical Description of Quantum Mechanics — Transformation and Dynamics. Physica Scripta. 82, 038117 (2010). | |
dc.relation.references | [14] Gallardo J. C. The geometrical formulation of quantum mechanics. Rev. Real Academia de Ciencias. Zaragoza. 67, 51–103 (2012). | |
dc.relation.references | [15] Heydari H. Geometric formulation of quantum mechanics. Preprint ArXiv: 1503.00238v2 (2016). | |
dc.relation.references | [16] Heisenberg W. Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. ¨ Zeitschrift f¨ur Physik. 43 (3–4), 172–198 (1927), (in German). | |
dc.relation.references | [17] Robertson H. P. The Uncertainty Principle. Physical Review. 34 (1), 163–164 (1929). | |
dc.relation.references | [18] Schr¨odinger E. Zum Heisenbergschen Unsch¨arfeprinzip. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse. 14, 296–303 (1930). | |
dc.relation.references | [19] Anandan J., Aharonov Y. Geometry of quantum evolution. Physical Review Letters. 65 (14), 1697–1700 (1990). | |
dc.relation.references | [20] de Gosson M. The symplectic camel and phase space quantization. Journal of Physics A: Mathematical and General. 34 (47), 10085–10096 (2001). | |
dc.relation.references | [21] de Gosson M. Phase space quantization and the uncertainty principle. Physics Letters A. 317 (5–6), 365–369 (2003). | |
dc.relation.references | [22] de Gosson M. On the goodness of quantum blobs in phase space quantization. Preprint ArXiv: quantph/0407129 (2004). | |
dc.relation.references | [23] de Gosson M. Symplectic Geometry and Quantum Mechanics. Birkhauser Verlag (2006). | |
dc.relation.references | [24] de Gosson M. Symplectic Non-Squeezing Theorems, Quantization of Integrable Systems, and Quantum Uncertainty. Preprint ArXiv: math-ph/0602055v1 (2006). | |
dc.relation.references | [25] de Gosson M. The Symplectic Camel and the Uncertainty Principle: The Tip of an Iceberg? Foundations of Physics. 99, 194–214 (2009). | |
dc.relation.references | [26] Andersson O., Heydari H. Geometric uncertainty relation for mixed quantum states. Journal of Mathematical Physics. 55 (4), 042110 (2014). | |
dc.relation.references | [27] Heydari H. A geometric framework for mixed quantum states based on a K¨ahler structure. Journal of Physics A: Mathematical and Theoretical. 48 (25), 255301 (2015). | |
dc.relation.references | [28] Sanborn B. A. The uncertainty principle and the energy identity for holomorphic maps in geometric quantum mechanics. Preprint ArXiv: 1710.09344 (2017). | |
dc.relation.referencesen | [1] Heslot A. Quantum mechanics as a classical theory. Physical Review D. 31 (6), 1341–1348 (1985). | |
dc.relation.referencesen | [2] Varadarajan V. S. Boolean Algebras on a Classical Phase Space. In: Geometry of Quantum Theory. Vol. 1. Springer, New York (1968). | |
dc.relation.referencesen | [3] Kibble T. W. B. Geometrization of quantum mechanics. Communications in Mathematical Physics. 65, 189–201 (1979). | |
dc.relation.referencesen | [4] Cirelli R., Lanzavecchia P. Hamiltonian vector fields in quantum mechanics. II Nuovo Cimento B. 79, 271–283 (1984). | |
dc.relation.referencesen | [5] Ashtekar A., Schilling T. A. Geometry of quantum mechanics. AIP Conference Proceedings. 342 (1), 471–478 (1995). | |
dc.relation.referencesen | [6] Anandan J. A Geometric Approach to Quantum Mechanics. Foundations of Physics. 21, 1265–1284 (1991). | |
dc.relation.referencesen | [7] Brody D. C., Hughston L. P. Geometric quantum mechanics. Journal of Geometry and Physics. 38 (1), 19–53 (2001). | |
dc.relation.referencesen | [8] Bengtsson I., Brannlund J., Zyczkowski K. CPn, or, Entanglement Illustrated. International Journal of Modern Physics A. 17 (31), 4675–4695 (2002). | |
dc.relation.referencesen | [9] Chru´sci´nski D., Jamio lkowski A. Geometric Phases in Classical and Quantum Mechanics. Progress in Mathematical Physics. Vol. 36 (2004). | |
dc.relation.referencesen | [10] Benvegn`u A., Sansonetto N., Spera M. Remarks on geometric quantum mechanics. Journal of Geometry and Physics. 51 (2), 229–243 (2004). | |
dc.relation.referencesen | [11] Chru´sci´nski D. Geometric Aspects of Quantum Mechanics and Quantum Entanglement. Journal of Physics: Conference Series. 30, 9–16 (2006). | |
dc.relation.referencesen | [12] Bengtsson I., Zyczkowski K. Geometry of Quantum States: An Introduction to Quantum Entanglement. United Kingdom, Cambridge University Press (2006). | |
dc.relation.referencesen | [13] Marmo G., Volkert G. Geometrical Description of Quantum Mechanics - Transformation and Dynamics. Physica Scripta. 82, 038117 (2010). | |
dc.relation.referencesen | [14] Gallardo J. C. The geometrical formulation of quantum mechanics. Rev. Real Academia de Ciencias. Zaragoza. 67, 51–103 (2012). | |
dc.relation.referencesen | [15] Heydari H. Geometric formulation of quantum mechanics. Preprint ArXiv: 1503.00238v2 (2016). | |
dc.relation.referencesen | [16] Heisenberg W. Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. ¨ Zeitschrift f¨ur Physik. 43 (3–4), 172–198 (1927), (in German). | |
dc.relation.referencesen | [17] Robertson H. P. The Uncertainty Principle. Physical Review. 34 (1), 163–164 (1929). | |
dc.relation.referencesen | [18] Schr¨odinger E. Zum Heisenbergschen Unsch¨arfeprinzip. Sitzungsberichte der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse. 14, 296–303 (1930). | |
dc.relation.referencesen | [19] Anandan J., Aharonov Y. Geometry of quantum evolution. Physical Review Letters. 65 (14), 1697–1700 (1990). | |
dc.relation.referencesen | [20] de Gosson M. The symplectic camel and phase space quantization. Journal of Physics A: Mathematical and General. 34 (47), 10085–10096 (2001). | |
dc.relation.referencesen | [21] de Gosson M. Phase space quantization and the uncertainty principle. Physics Letters A. 317 (5–6), 365–369 (2003). | |
dc.relation.referencesen | [22] de Gosson M. On the goodness of quantum blobs in phase space quantization. Preprint ArXiv: quantph/0407129 (2004). | |
dc.relation.referencesen | [23] de Gosson M. Symplectic Geometry and Quantum Mechanics. Birkhauser Verlag (2006). | |
dc.relation.referencesen | [24] de Gosson M. Symplectic Non-Squeezing Theorems, Quantization of Integrable Systems, and Quantum Uncertainty. Preprint ArXiv: math-ph/0602055v1 (2006). | |
dc.relation.referencesen | [25] de Gosson M. The Symplectic Camel and the Uncertainty Principle: The Tip of an Iceberg? Foundations of Physics. 99, 194–214 (2009). | |
dc.relation.referencesen | [26] Andersson O., Heydari H. Geometric uncertainty relation for mixed quantum states. Journal of Mathematical Physics. 55 (4), 042110 (2014). | |
dc.relation.referencesen | [27] Heydari H. A geometric framework for mixed quantum states based on a K¨ahler structure. Journal of Physics A: Mathematical and Theoretical. 48 (25), 255301 (2015). | |
dc.relation.referencesen | [28] Sanborn B. A. The uncertainty principle and the energy identity for holomorphic maps in geometric quantum mechanics. Preprint ArXiv: 1710.09344 (2017). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | диференціальна геометрія | |
dc.subject | принцип невизначеності | |
dc.subject | геометрична квантова механіка | |
dc.subject | квантова динаміка | |
dc.subject | гамільтонова механіка | |
dc.subject | differential geometry | |
dc.subject | uncertainty principle | |
dc.subject | geometric quantum mechanics | |
dc.subject | quantum dynamics | |
dc.subject | Hamiltonian mechanics | |
dc.title | The evolution of geometric Robertson–Schr¨odinger uncertainty principle for spin 1 system | |
dc.title.alternative | Еволюція геометричного принципу невизначеності Робертсона–Шредінгера для системи зі спіном 1 | |
dc.type | Article |
Files
License bundle
1 - 1 of 1