Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens
dc.citation.epage | 302 | |
dc.citation.issue | 2 | |
dc.citation.spage | 295 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Gunka, Volodymyr | |
dc.contributor.author | Prysiazhnyi, Yuriy | |
dc.contributor.author | YuriyDemchuk | |
dc.contributor.author | Hrynchuk, Yurii | |
dc.contributor.author | Sidun, Iurii | |
dc.contributor.author | Reutskyy, Volodymyr | |
dc.contributor.author | Bratychak, Michael | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T11:13:00Z | |
dc.date.available | 2024-01-22T11:13:00Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | В роботі досліджено можливість використання малеїнового ангідриду, як спінюючого агенту, для одержання спінених бітумів. За показниками збільшення об’єму в’яжучого та періоду розкладу піни встановлено оптимальний вміст малеїнового ангідриду. Із використанням малеїнового ангідриду, як спінюючого агенту, одержано спінений бітум, який використовувався для одержання двох зразків щебенево-мастикових асфальтобетонів, які відрізнялися між собою температурами змішування та ущільнення щебенево-мастикових асфальтобетонних сумішей. Після чого проведено проектування складу щебенево-мастикових асфальтобетонних сумішей із використанням не спінених (БНД 70/100 таБНД 70/100 модифікованого малеїновим ангідридом) спінених бітумів (БНД 70/100 спіненого малеїновим за двох різних температурних режимів). Проведено формування зразків щебенево-мастикових асфальтобетонів та їх випробування. | |
dc.description.abstract | The possibility of using maleic anhydride as a foaming agent to produce foamed bitumen was investigated. The optimal content of maleic anhydride was determined according to the indicators of the growth of the binder volume and the half-life of the foam. With use of maleic anhydride as a foaming agent, foamed bitumen was obtained, and later was used to obtain two samples of stone mastic asphalt, which differed in mixing and compaction temperatures of stone mastic asphalt mix. For comparison, the composition of stone mastic asphalt mix was designed using non-foamed (BND 70/100 and BND 70/100 modified with maleic anhydride) and foamed bitumen (BND 70/100 foamed with maleic anhydride at two different temperatures). Stone mastic asphalt specimens were formed and tested. | |
dc.format.extent | 295-302 | |
dc.format.pages | 8 | |
dc.identifier.citation | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens / Volodymyr Gunka, Yuriy Prysiazhnyi, YuriyDemchuk, Yurii Hrynchuk, Iurii Sidun, Volodymyr Reutskyy, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 295–302. | |
dc.identifier.citationen | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens / Volodymyr Gunka, Yuriy Prysiazhnyi, YuriyDemchuk, Yurii Hrynchuk, Iurii Sidun, Volodymyr Reutskyy, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 295–302. | |
dc.identifier.doi | doi.org/10.23939/chcht16.02.295 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60970 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (16), 2022 | |
dc.relation.references | [1] Sukhhija, M.; Saboo, N.A comprehensive Review of Warm Mix Asphalt Mixtures-Laboratory to Field. Constr. Build. Mater. 2021, 274, 121781. https://doi.org/10.1016/j.conbuildmat.2020.121781 | |
dc.relation.references | [2] Kim, Y.; Lee, J.; Baek, C.; Yang, S.; Kwon, S.; Suh, Y. Performance Evaluation of Warm-And Hot-Mix Asphalt Mixtures Based on Laboratory and Accelerated Pavement Tests. Adv. Mater. Sci. Eng. 2012, 2012, 1-9. https://doi.org/10.1155/2012/901658 | |
dc.relation.references | [3] Rondón-Quintana, H. A.; Hernández-Noguera, J. A.; Reyes-Lizcano, F. A. A Review of Warm Mix Asphalt Technology: Technical, Economical and Environmental Aspects. Ing. eInvestig. 2015, 35, 5-18. https://doi.org/10.15446/ing.investig.v35n3.50463 | |
dc.relation.references | [4] Rathore, M.; Haritonovs, V.; Zaumanis, M. Performance Evaluation of Warm Asphalt Mixtures Containing Chemical Additive and Effect of Incorporating High Reclaimed Asphalt Content. Materials2021, 14, 3793. https://doi.org/10.3390/ma14143793 | |
dc.relation.references | [5] Rubio, M. C.; Martínez, G.; Baena, L.; Moreno, F. Warm Mix Asphalt: An Overview. J. Clean. Prod. 2012, 24, 76-84. https://doi.org/10.1016/j.jclepro.2011.11.053 | |
dc.relation.references | [6] Abreu, L.; Oliveira, J.; Silva, H.; Silva, C.; Palha, D.; Fonseca, P. Foamed Bitumen: An Alternative Way of Producing Asphalt Mixtures. Cienc. e Tecnol. dos Mater. 2017, 29(1), 198-203. https://doi.org/10.1016/j.ctmat.2016.07.004 | |
dc.relation.references | [7] Ali, A.; Abbas, A.; Nazzal, M.; Alhassan, A.; Roy, A.; Powers, D. Effect of Temperature Reduction, Foaming Water Content, and Aggregate Moisture Content on Performance of Foamed Warm Mix Asphalt. Constr. Build. Mater. 2013, 48, 1058-1066. https://doi.org/10.1016/j.conbuildmat.2013.07.081 | |
dc.relation.references | [8] Abdullah, M.E., Ahmad Zamhari, K., Buhari, R., Abu Bakar, S.K., MohdKamaruddin, N.H., Nayan, N., Hainin, M.R., Abdul Hassan, N., Hassan, S.A., Md. Yusoff, N.I. Warm Mix Asphalt Technology: A Review. J. Teknol. 2014, 71, 1-14. https://doi.org/10.11113/jt.v71.3757 | |
dc.relation.references | [9] Cheraghian, G.; Falchetto, A. C.; You, Z.; Chen, S.; Kim, Y. S.; Westerhoff, J.; Moon K. H.; Wistuba, M. P. Warm Mix Asphalt Technology: An up to Date Review. J. Clean. Prod.2020, 268, 122128. https://doi.org/10.1016/j.jclepro.2020.122128 | |
dc.relation.references | [10] Caputo, P.; Abe, A.A.; Loise, V.; Porto, M.; Calandra, P.; Angelico, R.; Oliviero Rossi, C. The Role of Additives in Warm Mix Asphalt Technology: An Insight into their Mechanisms of Improving an Emerging Technology. Nanomaterials2020, 10, 1202. https://doi.org/10.3390/nano10061202 | |
dc.relation.references | [11] Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An Overview of the Emerging Warm Mix Asphalt Technology. Int. J. Pavement Eng. 2014, 15, 79-94. https://doi.org/10.1080/10298436.2013.839791 | |
dc.relation.references | [12] Zaumanis, M.; Haritonovs, V.; Brencis, G.; Smirnovs, J. Assessing the Potential and Possibilities for the Use of Warm Mix Asphalt in Latvia. Constr. Sci. 2012, 13, 53-59. https://doi.org/10.2478/v10311-012-0008-8 | |
dc.relation.references | [13] Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt Modification with Different Polyethylene-Based Polymers. Eur. Polym. J. 2005, 41, 2831-2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034 | |
dc.relation.references | [14] Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of Stable Polypropylene-Modified Bitumens. Fuel1996, 75, 681-686. https://doi.org/10.1016/0016-2361(95)00312-6 | |
dc.relation.references | [15] Sengoz, B.; Topal, A.; Isikyakar, G. Morphology and Image Analysis of Polymer Modified Bitumens. Constr. Build. Mater. 2009, 23, 1986-1992. https://doi.org/10.1016/j.conbuildmat.2008.08.020 | |
dc.relation.references | [16] Becker, M.Y.; Muller, A.J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl.Polym. Sci. 2003, 90, 1772-1782. https://doi.org/10.1002/app.12764 | |
dc.relation.references | [17] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.references | [18] Gunka V.; Demchuk Yu.; Pyshyev S.; Starovoit A.; Lypko Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal2018, 60 (6), 1199-1206. | |
dc.relation.references | [19] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.references | [20] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In Proceedings of EcoComfort 2020; Blikharskyy, Z., Ed.;Springer,2020;pp 95-102. https://doi.org/10.1007/978-3-030-57340-9_12 | |
dc.relation.references | [21] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279 | |
dc.relation.references | [22] Bratychak, M.; Grynyshyn, O.; Astakhova, O.; Shyshchak, O.; Wacławek, W. Functional Petroleum Resins Based on Pyrolysis By-Products and their Application for Bitumen Modification. Ecol. Chem. Eng.S2010, 17, 309-315. | |
dc.relation.references | [23] Wręczycki, J.; Demchuk, Y.; Bieliński, D. M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials2022, 15, 1774. https://doi.org/10.3390/ma15051774 | |
dc.relation.references | [24] Jasso, M.; Hampl, R.; Vacin, O.; Bakos, D.; Stastna, J.; Zanzotto, L. Rheology of Conventional Asphalt Modified with SBS, Elvaloy and Polyphosphoric Acid. Fuel Process. Technol. 2015, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002 | |
dc.relation.references | [25] Ortega, F.J.; Navarro, F.J.; García-Morales, M. Dodecylbenzenesulfonic Acid as a Bitumen Modifier: A Novel Approach to Enhance Rheological Properties of Bitumen. Energy Fuels2017, 31, 5003-5010. https://doi.org/10.1021/acs.energyfuels.7b00419 | |
dc.relation.references | [26] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Zhang, H.;Chen, H. Effect of Silane Coupling Agent on Improving the Adhesive Properties between Asphalt Binder and Aggregates. Constr. Build. Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186 | |
dc.relation.references | [27] Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035 | |
dc.relation.references | [28] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal2020, 62, 420-429. | |
dc.relation.references | [29] Bratychak, M.; Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.references | [30] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.references | [31] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.references | [32] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues.4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.references | [33] Zheltobriukh, A.; Malii, P.; Odehova, T.; Tymoshchuk, O. Using Asphalt Mixtures Based on Foamed Bitumen. Dorogi і mosti2019, 19-20, 94-106. https://doi.org/10.36100/dorogimosti2019.19.094 | |
dc.relation.references | [34] http://online.budstandart.com/ua/catalog/doc-page?id_doc=80850 | |
dc.relation.references | [35] Herrington, P.R.; Wu, Y.; Forbes, M.C. Rheological Modification of Bitumen with Maleic Anhydride and Dicarboxylic Acids. Fuel1999, 78, 101-110. https://doi.org/10.1016/S0016-2361(98)00120-3 | |
dc.relation.references | [36] Kang, Y.; Wang, F.; Chen, Z. Reaction of Asphalt and Maleic Anhydride: Kinetics and Mechanism. Chem. Eng. J. 2010, 164, 230-237. https://doi.org/10.1016/j.cej.2010.08.020 | |
dc.relation.referencesen | [1] Sukhhija, M.; Saboo, N.A comprehensive Review of Warm Mix Asphalt Mixtures-Laboratory to Field. Constr. Build. Mater. 2021, 274, 121781. https://doi.org/10.1016/j.conbuildmat.2020.121781 | |
dc.relation.referencesen | [2] Kim, Y.; Lee, J.; Baek, C.; Yang, S.; Kwon, S.; Suh, Y. Performance Evaluation of Warm-And Hot-Mix Asphalt Mixtures Based on Laboratory and Accelerated Pavement Tests. Adv. Mater. Sci. Eng. 2012, 2012, 1-9. https://doi.org/10.1155/2012/901658 | |
dc.relation.referencesen | [3] Rondón-Quintana, H. A.; Hernández-Noguera, J. A.; Reyes-Lizcano, F. A. A Review of Warm Mix Asphalt Technology: Technical, Economical and Environmental Aspects. Ing. eInvestig. 2015, 35, 5-18. https://doi.org/10.15446/ing.investig.v35n3.50463 | |
dc.relation.referencesen | [4] Rathore, M.; Haritonovs, V.; Zaumanis, M. Performance Evaluation of Warm Asphalt Mixtures Containing Chemical Additive and Effect of Incorporating High Reclaimed Asphalt Content. Materials2021, 14, 3793. https://doi.org/10.3390/ma14143793 | |
dc.relation.referencesen | [5] Rubio, M. C.; Martínez, G.; Baena, L.; Moreno, F. Warm Mix Asphalt: An Overview. J. Clean. Prod. 2012, 24, 76-84. https://doi.org/10.1016/j.jclepro.2011.11.053 | |
dc.relation.referencesen | [6] Abreu, L.; Oliveira, J.; Silva, H.; Silva, C.; Palha, D.; Fonseca, P. Foamed Bitumen: An Alternative Way of Producing Asphalt Mixtures. Cienc. e Tecnol. dos Mater. 2017, 29(1), 198-203. https://doi.org/10.1016/j.ctmat.2016.07.004 | |
dc.relation.referencesen | [7] Ali, A.; Abbas, A.; Nazzal, M.; Alhassan, A.; Roy, A.; Powers, D. Effect of Temperature Reduction, Foaming Water Content, and Aggregate Moisture Content on Performance of Foamed Warm Mix Asphalt. Constr. Build. Mater. 2013, 48, 1058-1066. https://doi.org/10.1016/j.conbuildmat.2013.07.081 | |
dc.relation.referencesen | [8] Abdullah, M.E., Ahmad Zamhari, K., Buhari, R., Abu Bakar, S.K., MohdKamaruddin, N.H., Nayan, N., Hainin, M.R., Abdul Hassan, N., Hassan, S.A., Md. Yusoff, N.I. Warm Mix Asphalt Technology: A Review. J. Teknol. 2014, 71, 1-14. https://doi.org/10.11113/jt.v71.3757 | |
dc.relation.referencesen | [9] Cheraghian, G.; Falchetto, A. C.; You, Z.; Chen, S.; Kim, Y. S.; Westerhoff, J.; Moon K. H.; Wistuba, M. P. Warm Mix Asphalt Technology: An up to Date Review. J. Clean. Prod.2020, 268, 122128. https://doi.org/10.1016/j.jclepro.2020.122128 | |
dc.relation.referencesen | [10] Caputo, P.; Abe, A.A.; Loise, V.; Porto, M.; Calandra, P.; Angelico, R.; Oliviero Rossi, C. The Role of Additives in Warm Mix Asphalt Technology: An Insight into their Mechanisms of Improving an Emerging Technology. Nanomaterials2020, 10, 1202. https://doi.org/10.3390/nano10061202 | |
dc.relation.referencesen | [11] Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An Overview of the Emerging Warm Mix Asphalt Technology. Int. J. Pavement Eng. 2014, 15, 79-94. https://doi.org/10.1080/10298436.2013.839791 | |
dc.relation.referencesen | [12] Zaumanis, M.; Haritonovs, V.; Brencis, G.; Smirnovs, J. Assessing the Potential and Possibilities for the Use of Warm Mix Asphalt in Latvia. Constr. Sci. 2012, 13, 53-59. https://doi.org/10.2478/v10311-012-0008-8 | |
dc.relation.referencesen | [13] Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt Modification with Different Polyethylene-Based Polymers. Eur. Polym. J. 2005, 41, 2831-2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034 | |
dc.relation.referencesen | [14] Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of Stable Polypropylene-Modified Bitumens. Fuel1996, 75, 681-686. https://doi.org/10.1016/0016-2361(95)00312-6 | |
dc.relation.referencesen | [15] Sengoz, B.; Topal, A.; Isikyakar, G. Morphology and Image Analysis of Polymer Modified Bitumens. Constr. Build. Mater. 2009, 23, 1986-1992. https://doi.org/10.1016/j.conbuildmat.2008.08.020 | |
dc.relation.referencesen | [16] Becker, M.Y.; Muller, A.J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl.Polym. Sci. 2003, 90, 1772-1782. https://doi.org/10.1002/app.12764 | |
dc.relation.referencesen | [17] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.referencesen | [18] Gunka V.; Demchuk Yu.; Pyshyev S.; Starovoit A.; Lypko Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal2018, 60 (6), 1199-1206. | |
dc.relation.referencesen | [19] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.referencesen | [20] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In Proceedings of EcoComfort 2020; Blikharskyy, Z., Ed.;Springer,2020;pp 95-102. https://doi.org/10.1007/978-3-030-57340-9_12 | |
dc.relation.referencesen | [21] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279 | |
dc.relation.referencesen | [22] Bratychak, M.; Grynyshyn, O.; Astakhova, O.; Shyshchak, O.; Wacławek, W. Functional Petroleum Resins Based on Pyrolysis By-Products and their Application for Bitumen Modification. Ecol. Chem. Eng.S2010, 17, 309-315. | |
dc.relation.referencesen | [23] Wręczycki, J.; Demchuk, Y.; Bieliński, D. M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials2022, 15, 1774. https://doi.org/10.3390/ma15051774 | |
dc.relation.referencesen | [24] Jasso, M.; Hampl, R.; Vacin, O.; Bakos, D.; Stastna, J.; Zanzotto, L. Rheology of Conventional Asphalt Modified with SBS, Elvaloy and Polyphosphoric Acid. Fuel Process. Technol. 2015, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002 | |
dc.relation.referencesen | [25] Ortega, F.J.; Navarro, F.J.; García-Morales, M. Dodecylbenzenesulfonic Acid as a Bitumen Modifier: A Novel Approach to Enhance Rheological Properties of Bitumen. Energy Fuels2017, 31, 5003-5010. https://doi.org/10.1021/acs.energyfuels.7b00419 | |
dc.relation.referencesen | [26] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Zhang, H.;Chen, H. Effect of Silane Coupling Agent on Improving the Adhesive Properties between Asphalt Binder and Aggregates. Constr. Build. Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186 | |
dc.relation.referencesen | [27] Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035 | |
dc.relation.referencesen | [28] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal2020, 62, 420-429. | |
dc.relation.referencesen | [29] Bratychak, M.; Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.referencesen | [30] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.referencesen | [31] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.referencesen | [32] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues.4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.referencesen | [33] Zheltobriukh, A.; Malii, P.; Odehova, T.; Tymoshchuk, O. Using Asphalt Mixtures Based on Foamed Bitumen. Dorogi i mosti2019, 19-20, 94-106. https://doi.org/10.36100/dorogimosti2019.19.094 | |
dc.relation.referencesen | [34] http://online.budstandart.com/ua/catalog/doc-page?id_doc=80850 | |
dc.relation.referencesen | [35] Herrington, P.R.; Wu, Y.; Forbes, M.C. Rheological Modification of Bitumen with Maleic Anhydride and Dicarboxylic Acids. Fuel1999, 78, 101-110. https://doi.org/10.1016/S0016-2361(98)00120-3 | |
dc.relation.referencesen | [36] Kang, Y.; Wang, F.; Chen, Z. Reaction of Asphalt and Maleic Anhydride: Kinetics and Mechanism. Chem. Eng. J. 2010, 164, 230-237. https://doi.org/10.1016/j.cej.2010.08.020 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2020.121781 | |
dc.relation.uri | https://doi.org/10.1155/2012/901658 | |
dc.relation.uri | https://doi.org/10.15446/ing.investig.v35n3.50463 | |
dc.relation.uri | https://doi.org/10.3390/ma14143793 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2011.11.053 | |
dc.relation.uri | https://doi.org/10.1016/j.ctmat.2016.07.004 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2013.07.081 | |
dc.relation.uri | https://doi.org/10.11113/jt.v71.3757 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2020.122128 | |
dc.relation.uri | https://doi.org/10.3390/nano10061202 | |
dc.relation.uri | https://doi.org/10.1080/10298436.2013.839791 | |
dc.relation.uri | https://doi.org/10.2478/v10311-012-0008-8 | |
dc.relation.uri | https://doi.org/10.1016/j.eurpolymj.2005.05.034 | |
dc.relation.uri | https://doi.org/10.1016/0016-2361(95)00312-6 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2008.08.020 | |
dc.relation.uri | https://doi.org/10.1002/app.12764 | |
dc.relation.uri | https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-57340-9_12 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.03.279 | |
dc.relation.uri | https://doi.org/10.3390/ma15051774 | |
dc.relation.uri | https://doi.org/10.1016/j.fuproc.2015.09.002 | |
dc.relation.uri | https://doi.org/10.1021/acs.energyfuels.7b00419 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2018.02.186 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2011.02.035 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.uri | https://doi.org/10.36100/dorogimosti2019.19.094 | |
dc.relation.uri | http://online.budstandart.com/ua/catalog/doc-page?id_doc=80850 | |
dc.relation.uri | https://doi.org/10.1016/S0016-2361(98)00120-3 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2010.08.020 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Gunka V., Prysiazhnyi Y., Demchuk Y., Hrynchuk Y., Sidun I., Reutskyy Vol., Bratychak M., 2022 | |
dc.subject | малеїновий ангідрид | |
dc.subject | модифікування бітуму | |
dc.subject | спінені бітуми | |
dc.subject | теплий асфальтобетон | |
dc.subject | maleic anhydride | |
dc.subject | modified bitumen | |
dc.subject | foamed bitumen | |
dc.subject | warm mix asphalt | |
dc.title | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens | |
dc.title.alternative | Одержання бітуму, модифікованого низькомолекулярними органічними сполуками із нафтових залишків. 5. Використання малеїнового ангідриду для одержання спінених бітумів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1