Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens

dc.citation.epage302
dc.citation.issue2
dc.citation.spage295
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorGunka, Volodymyr
dc.contributor.authorPrysiazhnyi, Yuriy
dc.contributor.authorYuriyDemchuk
dc.contributor.authorHrynchuk, Yurii
dc.contributor.authorSidun, Iurii
dc.contributor.authorReutskyy, Volodymyr
dc.contributor.authorBratychak, Michael
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T11:13:00Z
dc.date.available2024-01-22T11:13:00Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractВ роботі досліджено можливість використання малеїнового ангідриду, як спінюючого агенту, для одержання спінених бітумів. За показниками збільшення об’єму в’яжучого та періоду розкладу піни встановлено оптимальний вміст малеїнового ангідриду. Із використанням малеїнового ангідриду, як спінюючого агенту, одержано спінений бітум, який використовувався для одержання двох зразків щебенево-мастикових асфальтобетонів, які відрізнялися між собою температурами змішування та ущільнення щебенево-мастикових асфальтобетонних сумішей. Після чого проведено проектування складу щебенево-мастикових асфальтобетонних сумішей із використанням не спінених (БНД 70/100 таБНД 70/100 модифікованого малеїновим ангідридом) спінених бітумів (БНД 70/100 спіненого малеїновим за двох різних температурних режимів). Проведено формування зразків щебенево-мастикових асфальтобетонів та їх випробування.
dc.description.abstractThe possibility of using maleic anhydride as a foaming agent to produce foamed bitumen was investigated. The optimal content of maleic anhydride was determined according to the indicators of the growth of the binder volume and the half-life of the foam. With use of maleic anhydride as a foaming agent, foamed bitumen was obtained, and later was used to obtain two samples of stone mastic asphalt, which differed in mixing and compaction temperatures of stone mastic asphalt mix. For comparison, the composition of stone mastic asphalt mix was designed using non-foamed (BND 70/100 and BND 70/100 modified with maleic anhydride) and foamed bitumen (BND 70/100 foamed with maleic anhydride at two different temperatures). Stone mastic asphalt specimens were formed and tested.
dc.format.extent295-302
dc.format.pages8
dc.identifier.citationProduction of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens / Volodymyr Gunka, Yuriy Prysiazhnyi, YuriyDemchuk, Yurii Hrynchuk, Iurii Sidun, Volodymyr Reutskyy, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 295–302.
dc.identifier.citationenProduction of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens / Volodymyr Gunka, Yuriy Prysiazhnyi, YuriyDemchuk, Yurii Hrynchuk, Iurii Sidun, Volodymyr Reutskyy, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 2. — P. 295–302.
dc.identifier.doidoi.org/10.23939/chcht16.02.295
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60970
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (16), 2022
dc.relation.references[1] Sukhhija, M.; Saboo, N.A comprehensive Review of Warm Mix Asphalt Mixtures-Laboratory to Field. Constr. Build. Mater. 2021, 274, 121781. https://doi.org/10.1016/j.conbuildmat.2020.121781
dc.relation.references[2] Kim, Y.; Lee, J.; Baek, C.; Yang, S.; Kwon, S.; Suh, Y. Performance Evaluation of Warm-And Hot-Mix Asphalt Mixtures Based on Laboratory and Accelerated Pavement Tests. Adv. Mater. Sci. Eng. 2012, 2012, 1-9. https://doi.org/10.1155/2012/901658
dc.relation.references[3] Rondón-Quintana, H. A.; Hernández-Noguera, J. A.; Reyes-Lizcano, F. A. A Review of Warm Mix Asphalt Technology: Technical, Economical and Environmental Aspects. Ing. eInvestig. 2015, 35, 5-18. https://doi.org/10.15446/ing.investig.v35n3.50463
dc.relation.references[4] Rathore, M.; Haritonovs, V.; Zaumanis, M. Performance Evaluation of Warm Asphalt Mixtures Containing Chemical Additive and Effect of Incorporating High Reclaimed Asphalt Content. Materials2021, 14, 3793. https://doi.org/10.3390/ma14143793
dc.relation.references[5] Rubio, M. C.; Martínez, G.; Baena, L.; Moreno, F. Warm Mix Asphalt: An Overview. J. Clean. Prod. 2012, 24, 76-84. https://doi.org/10.1016/j.jclepro.2011.11.053
dc.relation.references[6] Abreu, L.; Oliveira, J.; Silva, H.; Silva, C.; Palha, D.; Fonseca, P. Foamed Bitumen: An Alternative Way of Producing Asphalt Mixtures. Cienc. e Tecnol. dos Mater. 2017, 29(1), 198-203. https://doi.org/10.1016/j.ctmat.2016.07.004
dc.relation.references[7] Ali, A.; Abbas, A.; Nazzal, M.; Alhassan, A.; Roy, A.; Powers, D. Effect of Temperature Reduction, Foaming Water Content, and Aggregate Moisture Content on Performance of Foamed Warm Mix Asphalt. Constr. Build. Mater. 2013, 48, 1058-1066. https://doi.org/10.1016/j.conbuildmat.2013.07.081
dc.relation.references[8] Abdullah, M.E., Ahmad Zamhari, K., Buhari, R., Abu Bakar, S.K., MohdKamaruddin, N.H., Nayan, N., Hainin, M.R., Abdul Hassan, N., Hassan, S.A., Md. Yusoff, N.I. Warm Mix Asphalt Technology: A Review. J. Teknol. 2014, 71, 1-14. https://doi.org/10.11113/jt.v71.3757
dc.relation.references[9] Cheraghian, G.; Falchetto, A. C.; You, Z.; Chen, S.; Kim, Y. S.; Westerhoff, J.; Moon K. H.; Wistuba, M. P. Warm Mix Asphalt Technology: An up to Date Review. J. Clean. Prod.2020, 268, 122128. https://doi.org/10.1016/j.jclepro.2020.122128
dc.relation.references[10] Caputo, P.; Abe, A.A.; Loise, V.; Porto, M.; Calandra, P.; Angelico, R.; Oliviero Rossi, C. The Role of Additives in Warm Mix Asphalt Technology: An Insight into their Mechanisms of Improving an Emerging Technology. Nanomaterials2020, 10, 1202. https://doi.org/10.3390/nano10061202
dc.relation.references[11] Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An Overview of the Emerging Warm Mix Asphalt Technology. Int. J. Pavement Eng. 2014, 15, 79-94. https://doi.org/10.1080/10298436.2013.839791
dc.relation.references[12] Zaumanis, M.; Haritonovs, V.; Brencis, G.; Smirnovs, J. Assessing the Potential and Possibilities for the Use of Warm Mix Asphalt in Latvia. Constr. Sci. 2012, 13, 53-59. https://doi.org/10.2478/v10311-012-0008-8
dc.relation.references[13] Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt Modification with Different Polyethylene-Based Polymers. Eur. Polym. J. 2005, 41, 2831-2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034
dc.relation.references[14] Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of Stable Polypropylene-Modified Bitumens. Fuel1996, 75, 681-686. https://doi.org/10.1016/0016-2361(95)00312-6
dc.relation.references[15] Sengoz, B.; Topal, A.; Isikyakar, G. Morphology and Image Analysis of Polymer Modified Bitumens. Constr. Build. Mater. 2009, 23, 1986-1992. https://doi.org/10.1016/j.conbuildmat.2008.08.020
dc.relation.references[16] Becker, M.Y.; Muller, A.J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl.Polym. Sci. 2003, 90, 1772-1782. https://doi.org/10.1002/app.12764
dc.relation.references[17] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.references[18] Gunka V.; Demchuk Yu.; Pyshyev S.; Starovoit A.; Lypko Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal2018, 60 (6), 1199-1206.
dc.relation.references[19] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
dc.relation.references[20] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In Proceedings of EcoComfort 2020; Blikharskyy, Z., Ed.;Springer,2020;pp 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.references[21] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
dc.relation.references[22] Bratychak, M.; Grynyshyn, O.; Astakhova, O.; Shyshchak, O.; Wacławek, W. Functional Petroleum Resins Based on Pyrolysis By-Products and their Application for Bitumen Modification. Ecol. Chem. Eng.S2010, 17, 309-315.
dc.relation.references[23] Wręczycki, J.; Demchuk, Y.; Bieliński, D. M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.references[24] Jasso, M.; Hampl, R.; Vacin, O.; Bakos, D.; Stastna, J.; Zanzotto, L. Rheology of Conventional Asphalt Modified with SBS, Elvaloy and Polyphosphoric Acid. Fuel Process. Technol. 2015, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002
dc.relation.references[25] Ortega, F.J.; Navarro, F.J.; García-Morales, M. Dodecylbenzenesulfonic Acid as a Bitumen Modifier: A Novel Approach to Enhance Rheological Properties of Bitumen. Energy Fuels2017, 31, 5003-5010. https://doi.org/10.1021/acs.energyfuels.7b00419
dc.relation.references[26] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Zhang, H.;Chen, H. Effect of Silane Coupling Agent on Improving the Adhesive Properties between Asphalt Binder and Aggregates. Constr. Build. Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186
dc.relation.references[27] Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035
dc.relation.references[28] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal2020, 62, 420-429.
dc.relation.references[29] Bratychak, M.; Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.references[30] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
dc.relation.references[31] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.references[32] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues.4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.references[33] Zheltobriukh, A.; Malii, P.; Odehova, T.; Tymoshchuk, O. Using Asphalt Mixtures Based on Foamed Bitumen. Dorogi і mosti2019, 19-20, 94-106. https://doi.org/10.36100/dorogimosti2019.19.094
dc.relation.references[34] http://online.budstandart.com/ua/catalog/doc-page?id_doc=80850
dc.relation.references[35] Herrington, P.R.; Wu, Y.; Forbes, M.C. Rheological Modification of Bitumen with Maleic Anhydride and Dicarboxylic Acids. Fuel1999, 78, 101-110. https://doi.org/10.1016/S0016-2361(98)00120-3
dc.relation.references[36] Kang, Y.; Wang, F.; Chen, Z. Reaction of Asphalt and Maleic Anhydride: Kinetics and Mechanism. Chem. Eng. J. 2010, 164, 230-237. https://doi.org/10.1016/j.cej.2010.08.020
dc.relation.referencesen[1] Sukhhija, M.; Saboo, N.A comprehensive Review of Warm Mix Asphalt Mixtures-Laboratory to Field. Constr. Build. Mater. 2021, 274, 121781. https://doi.org/10.1016/j.conbuildmat.2020.121781
dc.relation.referencesen[2] Kim, Y.; Lee, J.; Baek, C.; Yang, S.; Kwon, S.; Suh, Y. Performance Evaluation of Warm-And Hot-Mix Asphalt Mixtures Based on Laboratory and Accelerated Pavement Tests. Adv. Mater. Sci. Eng. 2012, 2012, 1-9. https://doi.org/10.1155/2012/901658
dc.relation.referencesen[3] Rondón-Quintana, H. A.; Hernández-Noguera, J. A.; Reyes-Lizcano, F. A. A Review of Warm Mix Asphalt Technology: Technical, Economical and Environmental Aspects. Ing. eInvestig. 2015, 35, 5-18. https://doi.org/10.15446/ing.investig.v35n3.50463
dc.relation.referencesen[4] Rathore, M.; Haritonovs, V.; Zaumanis, M. Performance Evaluation of Warm Asphalt Mixtures Containing Chemical Additive and Effect of Incorporating High Reclaimed Asphalt Content. Materials2021, 14, 3793. https://doi.org/10.3390/ma14143793
dc.relation.referencesen[5] Rubio, M. C.; Martínez, G.; Baena, L.; Moreno, F. Warm Mix Asphalt: An Overview. J. Clean. Prod. 2012, 24, 76-84. https://doi.org/10.1016/j.jclepro.2011.11.053
dc.relation.referencesen[6] Abreu, L.; Oliveira, J.; Silva, H.; Silva, C.; Palha, D.; Fonseca, P. Foamed Bitumen: An Alternative Way of Producing Asphalt Mixtures. Cienc. e Tecnol. dos Mater. 2017, 29(1), 198-203. https://doi.org/10.1016/j.ctmat.2016.07.004
dc.relation.referencesen[7] Ali, A.; Abbas, A.; Nazzal, M.; Alhassan, A.; Roy, A.; Powers, D. Effect of Temperature Reduction, Foaming Water Content, and Aggregate Moisture Content on Performance of Foamed Warm Mix Asphalt. Constr. Build. Mater. 2013, 48, 1058-1066. https://doi.org/10.1016/j.conbuildmat.2013.07.081
dc.relation.referencesen[8] Abdullah, M.E., Ahmad Zamhari, K., Buhari, R., Abu Bakar, S.K., MohdKamaruddin, N.H., Nayan, N., Hainin, M.R., Abdul Hassan, N., Hassan, S.A., Md. Yusoff, N.I. Warm Mix Asphalt Technology: A Review. J. Teknol. 2014, 71, 1-14. https://doi.org/10.11113/jt.v71.3757
dc.relation.referencesen[9] Cheraghian, G.; Falchetto, A. C.; You, Z.; Chen, S.; Kim, Y. S.; Westerhoff, J.; Moon K. H.; Wistuba, M. P. Warm Mix Asphalt Technology: An up to Date Review. J. Clean. Prod.2020, 268, 122128. https://doi.org/10.1016/j.jclepro.2020.122128
dc.relation.referencesen[10] Caputo, P.; Abe, A.A.; Loise, V.; Porto, M.; Calandra, P.; Angelico, R.; Oliviero Rossi, C. The Role of Additives in Warm Mix Asphalt Technology: An Insight into their Mechanisms of Improving an Emerging Technology. Nanomaterials2020, 10, 1202. https://doi.org/10.3390/nano10061202
dc.relation.referencesen[11] Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An Overview of the Emerging Warm Mix Asphalt Technology. Int. J. Pavement Eng. 2014, 15, 79-94. https://doi.org/10.1080/10298436.2013.839791
dc.relation.referencesen[12] Zaumanis, M.; Haritonovs, V.; Brencis, G.; Smirnovs, J. Assessing the Potential and Possibilities for the Use of Warm Mix Asphalt in Latvia. Constr. Sci. 2012, 13, 53-59. https://doi.org/10.2478/v10311-012-0008-8
dc.relation.referencesen[13] Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt Modification with Different Polyethylene-Based Polymers. Eur. Polym. J. 2005, 41, 2831-2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034
dc.relation.referencesen[14] Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of Stable Polypropylene-Modified Bitumens. Fuel1996, 75, 681-686. https://doi.org/10.1016/0016-2361(95)00312-6
dc.relation.referencesen[15] Sengoz, B.; Topal, A.; Isikyakar, G. Morphology and Image Analysis of Polymer Modified Bitumens. Constr. Build. Mater. 2009, 23, 1986-1992. https://doi.org/10.1016/j.conbuildmat.2008.08.020
dc.relation.referencesen[16] Becker, M.Y.; Muller, A.J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl.Polym. Sci. 2003, 90, 1772-1782. https://doi.org/10.1002/app.12764
dc.relation.referencesen[17] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.referencesen[18] Gunka V.; Demchuk Yu.; Pyshyev S.; Starovoit A.; Lypko Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal2018, 60 (6), 1199-1206.
dc.relation.referencesen[19] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
dc.relation.referencesen[20] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In Proceedings of EcoComfort 2020; Blikharskyy, Z., Ed.;Springer,2020;pp 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.referencesen[21] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
dc.relation.referencesen[22] Bratychak, M.; Grynyshyn, O.; Astakhova, O.; Shyshchak, O.; Wacławek, W. Functional Petroleum Resins Based on Pyrolysis By-Products and their Application for Bitumen Modification. Ecol. Chem. Eng.S2010, 17, 309-315.
dc.relation.referencesen[23] Wręczycki, J.; Demchuk, Y.; Bieliński, D. M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.referencesen[24] Jasso, M.; Hampl, R.; Vacin, O.; Bakos, D.; Stastna, J.; Zanzotto, L. Rheology of Conventional Asphalt Modified with SBS, Elvaloy and Polyphosphoric Acid. Fuel Process. Technol. 2015, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002
dc.relation.referencesen[25] Ortega, F.J.; Navarro, F.J.; García-Morales, M. Dodecylbenzenesulfonic Acid as a Bitumen Modifier: A Novel Approach to Enhance Rheological Properties of Bitumen. Energy Fuels2017, 31, 5003-5010. https://doi.org/10.1021/acs.energyfuels.7b00419
dc.relation.referencesen[26] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Zhang, H.;Chen, H. Effect of Silane Coupling Agent on Improving the Adhesive Properties between Asphalt Binder and Aggregates. Constr. Build. Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186
dc.relation.referencesen[27] Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035
dc.relation.referencesen[28] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal2020, 62, 420-429.
dc.relation.referencesen[29] Bratychak, M.; Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.referencesen[30] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
dc.relation.referencesen[31] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.referencesen[32] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues.4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.referencesen[33] Zheltobriukh, A.; Malii, P.; Odehova, T.; Tymoshchuk, O. Using Asphalt Mixtures Based on Foamed Bitumen. Dorogi i mosti2019, 19-20, 94-106. https://doi.org/10.36100/dorogimosti2019.19.094
dc.relation.referencesen[34] http://online.budstandart.com/ua/catalog/doc-page?id_doc=80850
dc.relation.referencesen[35] Herrington, P.R.; Wu, Y.; Forbes, M.C. Rheological Modification of Bitumen with Maleic Anhydride and Dicarboxylic Acids. Fuel1999, 78, 101-110. https://doi.org/10.1016/S0016-2361(98)00120-3
dc.relation.referencesen[36] Kang, Y.; Wang, F.; Chen, Z. Reaction of Asphalt and Maleic Anhydride: Kinetics and Mechanism. Chem. Eng. J. 2010, 164, 230-237. https://doi.org/10.1016/j.cej.2010.08.020
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2020.121781
dc.relation.urihttps://doi.org/10.1155/2012/901658
dc.relation.urihttps://doi.org/10.15446/ing.investig.v35n3.50463
dc.relation.urihttps://doi.org/10.3390/ma14143793
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2011.11.053
dc.relation.urihttps://doi.org/10.1016/j.ctmat.2016.07.004
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2013.07.081
dc.relation.urihttps://doi.org/10.11113/jt.v71.3757
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.122128
dc.relation.urihttps://doi.org/10.3390/nano10061202
dc.relation.urihttps://doi.org/10.1080/10298436.2013.839791
dc.relation.urihttps://doi.org/10.2478/v10311-012-0008-8
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2005.05.034
dc.relation.urihttps://doi.org/10.1016/0016-2361(95)00312-6
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2008.08.020
dc.relation.urihttps://doi.org/10.1002/app.12764
dc.relation.urihttps://doi.org/10.1080/14680629.2020.1808518
dc.relation.urihttps://doi.org/10.23939/chcht14.02.251
dc.relation.urihttps://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.urihttps://doi.org/10.23939/chcht07.03.279
dc.relation.urihttps://doi.org/10.3390/ma15051774
dc.relation.urihttps://doi.org/10.1016/j.fuproc.2015.09.002
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.7b00419
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.02.186
dc.relation.urihttps://doi.org/10.1016/j.fuel.2011.02.035
dc.relation.urihttps://doi.org/10.23939/chcht15.02.274
dc.relation.urihttps://doi.org/10.23939/chcht15.03.443
dc.relation.urihttps://doi.org/10.23939/chcht15.04.608
dc.relation.urihttps://doi.org/10.23939/chcht16.01.142
dc.relation.urihttps://doi.org/10.36100/dorogimosti2019.19.094
dc.relation.urihttp://online.budstandart.com/ua/catalog/doc-page?id_doc=80850
dc.relation.urihttps://doi.org/10.1016/S0016-2361(98)00120-3
dc.relation.urihttps://doi.org/10.1016/j.cej.2010.08.020
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Gunka V., Prysiazhnyi Y., Demchuk Y., Hrynchuk Y., Sidun I., Reutskyy Vol., Bratychak M., 2022
dc.subjectмалеїновий ангідрид
dc.subjectмодифікування бітуму
dc.subjectспінені бітуми
dc.subjectтеплий асфальтобетон
dc.subjectmaleic anhydride
dc.subjectmodified bitumen
dc.subjectfoamed bitumen
dc.subjectwarm mix asphalt
dc.titleProduction of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens
dc.title.alternativeОдержання бітуму, модифікованого низькомолекулярними органічними сполуками із нафтових залишків. 5. Використання малеїнового ангідриду для одержання спінених бітумів
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v16n2_Gunka_V-Production_of_Bitumen_Modified_295-302.pdf
Size:
491.68 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v16n2_Gunka_V-Production_of_Bitumen_Modified_295-302__COVER.png
Size:
433.12 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: