Proton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method

dc.citation.epage443
dc.citation.issue4
dc.citation.spage436
dc.contributor.affiliationL. M. Lytvynenko Institute of Physical Organic Chemistry and Coal Chemistry of NAS of Ukraine
dc.contributor.affiliationVasyl Stefanyk Precarpathian National University
dc.contributor.authorZhyhailo, Mariia
dc.contributor.authorDemchyna, Oksana
dc.contributor.authorRymsha, Khrystyna
dc.contributor.authorYevchuk, Iryna
dc.contributor.authorRachiy, Bogdan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-03T09:04:23Z
dc.date.available2020-03-03T09:04:23Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractНа основі акрилових мономерів та кремнеземної неорганічної складової, сформованої у результаті золь-гель перетворення прекурсора - 3-метакрилоксипропілтриметоксисилану (МАПТМС), синтезовано протонопровідні органо-неорганічні нанокомпозитні мембрани. Методом лазерної інтерферометрії досліджено кінетику полімеризації in situ. Встановлено водопоглинання мембран і набрякання їх у метанолі, виміряно контактні кути змочування, що дало змогу розрахувати вільну поверхневу енергію мембран та її складові. Досліджено протонну провідність мембран за різних температур, оцінено енергію активації протонної провідності. Одержані гібридні мембрани демонструють високу протонну провідність, що дає можливість використовувати їх у паливних комірках.
dc.description.abstractProton conductive organic-inorganic membranes were synthesized based on acrylic monomers and silica inorganic component, derived as a result of sol-gel transformation of precursor – 3-methacryloxypropyltrimethoxysilane (MAPTMS). Kinetics of polymerization in situ was investigated by laser interferometry. Membranes characterization includes water and methanol uptake, contact angle and proton conductivity at different temperatures. Activation energy values for proton conductivity in prepared membranes were evaluated. The obtained hybrid membranes demonstrated high proton conductivity making themattractive for the use in fuel cells.
dc.format.extent436-443
dc.format.pages8
dc.identifier.citationProton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method / Mariia Zhyhailo, Oksana Demchyna, Khrystyna Rymsha, Iryna Yevchuk, Bogdan Rachiy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 436–443.
dc.identifier.citationenProton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method / Mariia Zhyhailo, Oksana Demchyna, Khrystyna Rymsha, Iryna Yevchuk, Bogdan Rachiy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 436–443.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46512
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (13), 2019
dc.relation.references1. Liu Y.-L.: Polym. Chem., 2012, 3, 1373. https://doi.org/10.1039/c2py20106b
dc.relation.references2. Devanathan R.: Energy Environ. Sci., 2008, 1, 101. https://doi.org/10.1039/b808149m
dc.relation.references3. Xu T., Wu D., Wu L.: Prog. Polym. Sci., 2008, 33, 894. https://doi.org/10.1016/j.progpolymsci.2008.07.002
dc.relation.references4. Ahmad H., Kamarudin S., Hasran U. et al.: Int. J. Hydrogen Energy, 2010, 35, 2160. https://doi.org/10.1016/j.ijhydene.2009.12.054
dc.relation.references5. Elabd Y., Hickner M.:Macromolecules, 2011, 44, 1. https://doi.org/10.1021/ma101247c
dc.relation.references6. Tarasevych M., Kuzov A.: Int. Sci. J. for Alternative Energy and Ecology, 2010, 7, 86.
dc.relation.references7. Aricò A., Srinivasan S., Antonucci V.: Fuel Cells, 2001, 1, 133. https://doi.org/10.1002/1615-6854(200107)1:2<133::AIDFUCE133> 3.0.CO;2-5
dc.relation.references8. Silva V., Mendes A., Madeira L. et al.: Advances in Fuel Cells, 2005, 24 p.
dc.relation.references9. Dupuis A.: Prog. Mater. Sci., 2011, 56, 289. https://doi.org/10.1016/j.pmatsci.2010.11.001
dc.relation.references10. Park C., Lee C., Guiver M. et al.: Prog. Polym. Sci., 2011, 36, 1443. https://doi.org/10.1016/j.progpolymsci.2011.06.001
dc.relation.references11. Liang Z., Zhao T., Prabhuram J.: J. Membr. Sci., 2006, 283, 219. https://doi.org/10.1016/j.memsci.2006.06.031
dc.relation.references12. Pu C., Huang W., Ley K. et al.: J. Electrochem. Soc., 1995, 142, L119. https://doi.org/10.1149/1.2044333
dc.relation.references13. Peled E., Duvdevani T., Aharon A. et al.: Solid State Lett., 2000, 3, 525. https://doi.org/10.1149/1.1391198
dc.relation.references14. Kim D., JoM., Nam S.: J. Ind. Eng. Chem., 2015, 21, 36. https://doi.org/10.1016/j.jiec.2014.04.030
dc.relation.references15. Ogoshi T., Chujo Y.: Composite Interfaces, 2005, 11, 539. https://doi.org/10.1163/1568554053148735
dc.relation.references16. Kim D., Lee B., Nam S.: Thin Solid Films, 2013, 546, 431. https://doi.org/10.1016/j.tsf.2013.05.121
dc.relation.references17. Takahashi K., Umeda J., Hayashi K. et al.: J. Mater. Sci., 2015, 51, 3398. https://doi.org/10.1007/s10853-015-9654-0
dc.relation.references18. TakemotoM., Hayashi K., SakamotoW.: Polymer, 120, 264. https://doi.org/10.1016/j.polymer.2017.05.065
dc.relation.references19. Demydova Kh., Horechyy A., Yevchuk I. et al.: Chem. Chem. Technol., 2018, 12, 58. https://doi.org/10.23939/chcht12.01.058
dc.relation.references20. Samaryk V., Voronov A., Tarnavchyk I. et al.: Prog. Org. Coat., 2012, 74, 687. https://doi.org/10.1016/j.porgcoat.2011.07.015
dc.relation.references21. Kapoor P., Mhaske S., Joshi K.: Prog. Org. Coat., 2016, 94, 124. https://doi.org/10.1016/j.porgcoat.2015.11.021
dc.relation.references22. Costa R., Lameiras F., Nunes E. et al.: Ceram. Int., 2016, 42, 3465. https://doi.org/10.1016/j.ceramint.2015.10.145
dc.relation.references23. AparicioM., Duran A.: J. Sol Gel Sci. Technol. 2004, 31, 103. https://doi.org/10.1023/B:JSST.0000047969.56298.d7
dc.relation.references24. Kreuer K.: Chem. Mater., 1996, 8, 610. https://doi.org/10.1021/cm950192a
dc.relation.references25. Ying L., Jiang-Hong G., Yu-Sheng X.: Acta Phys.-Chim. Sin., 2001, 17, 792. https://doi.org/10.3866/PKU.WHXB20010906
dc.relation.references26. Park Y.-I., Moon J., Kim H.: Electrochem. Solid State Lett., 2005, 8, A191. https://doi.org/10.1149/1.1862472
dc.relation.references27. Kim H., Prakash S., Mustain W. et al.: J. Power Sour., 2009, 193, 562. https://doi.org/10.1016/j.jpowsour.2009.04.040
dc.relation.referencesen1. Liu Y.-L., Polym. Chem., 2012, 3, 1373. https://doi.org/10.1039/P.2py20106b
dc.relation.referencesen2. Devanathan R., Energy Environ. Sci., 2008, 1, 101. https://doi.org/10.1039/b808149m
dc.relation.referencesen3. Xu T., Wu D., Wu L., Prog. Polym. Sci., 2008, 33, 894. https://doi.org/10.1016/j.progpolymsci.2008.07.002
dc.relation.referencesen4. Ahmad H., Kamarudin S., Hasran U. et al., Int. J. Hydrogen Energy, 2010, 35, 2160. https://doi.org/10.1016/j.ijhydene.2009.12.054
dc.relation.referencesen5. Elabd Y., Hickner M.:Macromolecules, 2011, 44, 1. https://doi.org/10.1021/ma101247c
dc.relation.referencesen6. Tarasevych M., Kuzov A., Int. Sci. J. for Alternative Energy and Ecology, 2010, 7, 86.
dc.relation.referencesen7. Aricò A., Srinivasan S., Antonucci V., Fuel Cells, 2001, 1, 133. https://doi.org/10.1002/1615-6854(200107)1:2<133::AIDFUCE133> 3.0.CO;2-5
dc.relation.referencesen8. Silva V., Mendes A., Madeira L. et al., Advances in Fuel Cells, 2005, 24 p.
dc.relation.referencesen9. Dupuis A., Prog. Mater. Sci., 2011, 56, 289. https://doi.org/10.1016/j.pmatsci.2010.11.001
dc.relation.referencesen10. Park C., Lee C., Guiver M. et al., Prog. Polym. Sci., 2011, 36, 1443. https://doi.org/10.1016/j.progpolymsci.2011.06.001
dc.relation.referencesen11. Liang Z., Zhao T., Prabhuram J., J. Membr. Sci., 2006, 283, 219. https://doi.org/10.1016/j.memsci.2006.06.031
dc.relation.referencesen12. Pu C., Huang W., Ley K. et al., J. Electrochem. Soc., 1995, 142, L119. https://doi.org/10.1149/1.2044333
dc.relation.referencesen13. Peled E., Duvdevani T., Aharon A. et al., Solid State Lett., 2000, 3, 525. https://doi.org/10.1149/1.1391198
dc.relation.referencesen14. Kim D., JoM., Nam S., J. Ind. Eng. Chem., 2015, 21, 36. https://doi.org/10.1016/j.jiec.2014.04.030
dc.relation.referencesen15. Ogoshi T., Chujo Y., Composite Interfaces, 2005, 11, 539. https://doi.org/10.1163/1568554053148735
dc.relation.referencesen16. Kim D., Lee B., Nam S., Thin Solid Films, 2013, 546, 431. https://doi.org/10.1016/j.tsf.2013.05.121
dc.relation.referencesen17. Takahashi K., Umeda J., Hayashi K. et al., J. Mater. Sci., 2015, 51, 3398. https://doi.org/10.1007/s10853-015-9654-0
dc.relation.referencesen18. TakemotoM., Hayashi K., SakamotoW., Polymer, 120, 264. https://doi.org/10.1016/j.polymer.2017.05.065
dc.relation.referencesen19. Demydova Kh., Horechyy A., Yevchuk I. et al., Chem. Chem. Technol., 2018, 12, 58. https://doi.org/10.23939/chcht12.01.058
dc.relation.referencesen20. Samaryk V., Voronov A., Tarnavchyk I. et al., Prog. Org. Coat., 2012, 74, 687. https://doi.org/10.1016/j.porgcoat.2011.07.015
dc.relation.referencesen21. Kapoor P., Mhaske S., Joshi K., Prog. Org. Coat., 2016, 94, 124. https://doi.org/10.1016/j.porgcoat.2015.11.021
dc.relation.referencesen22. Costa R., Lameiras F., Nunes E. et al., Ceram. Int., 2016, 42, 3465. https://doi.org/10.1016/j.ceramint.2015.10.145
dc.relation.referencesen23. AparicioM., Duran A., J. Sol Gel Sci. Technol. 2004, 31, 103. https://doi.org/10.1023/B:JSST.0000047969.56298.d7
dc.relation.referencesen24. Kreuer K., Chem. Mater., 1996, 8, 610. https://doi.org/10.1021/cm950192a
dc.relation.referencesen25. Ying L., Jiang-Hong G., Yu-Sheng X., Acta Phys.-Chim. Sin., 2001, 17, 792. https://doi.org/10.3866/PKU.WHXB20010906
dc.relation.referencesen26. Park Y.-I., Moon J., Kim H., Electrochem. Solid State Lett., 2005, 8, A191. https://doi.org/10.1149/1.1862472
dc.relation.referencesen27. Kim H., Prakash S., Mustain W. et al., J. Power Sour., 2009, 193, 562. https://doi.org/10.1016/j.jpowsour.2009.04.040
dc.relation.urihttps://doi.org/10.1039/c2py20106b
dc.relation.urihttps://doi.org/10.1039/b808149m
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2008.07.002
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2009.12.054
dc.relation.urihttps://doi.org/10.1021/ma101247c
dc.relation.urihttps://doi.org/10.1002/1615-6854(200107)1:2<133::AIDFUCE133>
dc.relation.urihttps://doi.org/10.1016/j.pmatsci.2010.11.001
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2011.06.001
dc.relation.urihttps://doi.org/10.1016/j.memsci.2006.06.031
dc.relation.urihttps://doi.org/10.1149/1.2044333
dc.relation.urihttps://doi.org/10.1149/1.1391198
dc.relation.urihttps://doi.org/10.1016/j.jiec.2014.04.030
dc.relation.urihttps://doi.org/10.1163/1568554053148735
dc.relation.urihttps://doi.org/10.1016/j.tsf.2013.05.121
dc.relation.urihttps://doi.org/10.1007/s10853-015-9654-0
dc.relation.urihttps://doi.org/10.1016/j.polymer.2017.05.065
dc.relation.urihttps://doi.org/10.23939/chcht12.01.058
dc.relation.urihttps://doi.org/10.1016/j.porgcoat.2011.07.015
dc.relation.urihttps://doi.org/10.1016/j.porgcoat.2015.11.021
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2015.10.145
dc.relation.urihttps://doi.org/10.1023/B:JSST.0000047969.56298.d7
dc.relation.urihttps://doi.org/10.1021/cm950192a
dc.relation.urihttps://doi.org/10.3866/PKU.WHXB20010906
dc.relation.urihttps://doi.org/10.1149/1.1862472
dc.relation.urihttps://doi.org/10.1016/j.jpowsour.2009.04.040
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Zhyhailo M., Demchyna O., Rymsha K., Yevchuk I., Rachiy B., 2019
dc.subjectпротонна провідність
dc.subjectорганонеорганічна мембрана
dc.subjectУФ-затвердження
dc.subjectзоль-гель процес
dc.subjectакрилат
dc.subject3-метакрилоксипропілтриметоксисилан
dc.subjectproton conductivity
dc.subjectorganic-inorganic membrane
dc.subjectUV-curing
dc.subjectsol-gel process
dc.subjectacrylate
dc.subject3-methacryloxypropyltrimethoxysilane
dc.titleProton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method
dc.title.alternativeПротонопровідні органо-неорганічні нанокомпозитні мембрани, одержані Золь-Гель методом
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v13n4_Zhyhailo_M-Proton_Conductive_Organic_436-443.pdf
Size:
679.88 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v13n4_Zhyhailo_M-Proton_Conductive_Organic_436-443__COVER.png
Size:
555.95 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3 KB
Format:
Plain Text
Description: