Proton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method
dc.citation.epage | 443 | |
dc.citation.issue | 4 | |
dc.citation.spage | 436 | |
dc.contributor.affiliation | L. M. Lytvynenko Institute of Physical Organic Chemistry and Coal Chemistry of NAS of Ukraine | |
dc.contributor.affiliation | Vasyl Stefanyk Precarpathian National University | |
dc.contributor.author | Zhyhailo, Mariia | |
dc.contributor.author | Demchyna, Oksana | |
dc.contributor.author | Rymsha, Khrystyna | |
dc.contributor.author | Yevchuk, Iryna | |
dc.contributor.author | Rachiy, Bogdan | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-03-03T09:04:23Z | |
dc.date.available | 2020-03-03T09:04:23Z | |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.description.abstract | На основі акрилових мономерів та кремнеземної неорганічної складової, сформованої у результаті золь-гель перетворення прекурсора - 3-метакрилоксипропілтриметоксисилану (МАПТМС), синтезовано протонопровідні органо-неорганічні нанокомпозитні мембрани. Методом лазерної інтерферометрії досліджено кінетику полімеризації in situ. Встановлено водопоглинання мембран і набрякання їх у метанолі, виміряно контактні кути змочування, що дало змогу розрахувати вільну поверхневу енергію мембран та її складові. Досліджено протонну провідність мембран за різних температур, оцінено енергію активації протонної провідності. Одержані гібридні мембрани демонструють високу протонну провідність, що дає можливість використовувати їх у паливних комірках. | |
dc.description.abstract | Proton conductive organic-inorganic membranes were synthesized based on acrylic monomers and silica inorganic component, derived as a result of sol-gel transformation of precursor – 3-methacryloxypropyltrimethoxysilane (MAPTMS). Kinetics of polymerization in situ was investigated by laser interferometry. Membranes characterization includes water and methanol uptake, contact angle and proton conductivity at different temperatures. Activation energy values for proton conductivity in prepared membranes were evaluated. The obtained hybrid membranes demonstrated high proton conductivity making themattractive for the use in fuel cells. | |
dc.format.extent | 436-443 | |
dc.format.pages | 8 | |
dc.identifier.citation | Proton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method / Mariia Zhyhailo, Oksana Demchyna, Khrystyna Rymsha, Iryna Yevchuk, Bogdan Rachiy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 436–443. | |
dc.identifier.citationen | Proton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method / Mariia Zhyhailo, Oksana Demchyna, Khrystyna Rymsha, Iryna Yevchuk, Bogdan Rachiy // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 4. — P. 436–443. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46512 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 4 (13), 2019 | |
dc.relation.references | 1. Liu Y.-L.: Polym. Chem., 2012, 3, 1373. https://doi.org/10.1039/c2py20106b | |
dc.relation.references | 2. Devanathan R.: Energy Environ. Sci., 2008, 1, 101. https://doi.org/10.1039/b808149m | |
dc.relation.references | 3. Xu T., Wu D., Wu L.: Prog. Polym. Sci., 2008, 33, 894. https://doi.org/10.1016/j.progpolymsci.2008.07.002 | |
dc.relation.references | 4. Ahmad H., Kamarudin S., Hasran U. et al.: Int. J. Hydrogen Energy, 2010, 35, 2160. https://doi.org/10.1016/j.ijhydene.2009.12.054 | |
dc.relation.references | 5. Elabd Y., Hickner M.:Macromolecules, 2011, 44, 1. https://doi.org/10.1021/ma101247c | |
dc.relation.references | 6. Tarasevych M., Kuzov A.: Int. Sci. J. for Alternative Energy and Ecology, 2010, 7, 86. | |
dc.relation.references | 7. Aricò A., Srinivasan S., Antonucci V.: Fuel Cells, 2001, 1, 133. https://doi.org/10.1002/1615-6854(200107)1:2<133::AIDFUCE133> 3.0.CO;2-5 | |
dc.relation.references | 8. Silva V., Mendes A., Madeira L. et al.: Advances in Fuel Cells, 2005, 24 p. | |
dc.relation.references | 9. Dupuis A.: Prog. Mater. Sci., 2011, 56, 289. https://doi.org/10.1016/j.pmatsci.2010.11.001 | |
dc.relation.references | 10. Park C., Lee C., Guiver M. et al.: Prog. Polym. Sci., 2011, 36, 1443. https://doi.org/10.1016/j.progpolymsci.2011.06.001 | |
dc.relation.references | 11. Liang Z., Zhao T., Prabhuram J.: J. Membr. Sci., 2006, 283, 219. https://doi.org/10.1016/j.memsci.2006.06.031 | |
dc.relation.references | 12. Pu C., Huang W., Ley K. et al.: J. Electrochem. Soc., 1995, 142, L119. https://doi.org/10.1149/1.2044333 | |
dc.relation.references | 13. Peled E., Duvdevani T., Aharon A. et al.: Solid State Lett., 2000, 3, 525. https://doi.org/10.1149/1.1391198 | |
dc.relation.references | 14. Kim D., JoM., Nam S.: J. Ind. Eng. Chem., 2015, 21, 36. https://doi.org/10.1016/j.jiec.2014.04.030 | |
dc.relation.references | 15. Ogoshi T., Chujo Y.: Composite Interfaces, 2005, 11, 539. https://doi.org/10.1163/1568554053148735 | |
dc.relation.references | 16. Kim D., Lee B., Nam S.: Thin Solid Films, 2013, 546, 431. https://doi.org/10.1016/j.tsf.2013.05.121 | |
dc.relation.references | 17. Takahashi K., Umeda J., Hayashi K. et al.: J. Mater. Sci., 2015, 51, 3398. https://doi.org/10.1007/s10853-015-9654-0 | |
dc.relation.references | 18. TakemotoM., Hayashi K., SakamotoW.: Polymer, 120, 264. https://doi.org/10.1016/j.polymer.2017.05.065 | |
dc.relation.references | 19. Demydova Kh., Horechyy A., Yevchuk I. et al.: Chem. Chem. Technol., 2018, 12, 58. https://doi.org/10.23939/chcht12.01.058 | |
dc.relation.references | 20. Samaryk V., Voronov A., Tarnavchyk I. et al.: Prog. Org. Coat., 2012, 74, 687. https://doi.org/10.1016/j.porgcoat.2011.07.015 | |
dc.relation.references | 21. Kapoor P., Mhaske S., Joshi K.: Prog. Org. Coat., 2016, 94, 124. https://doi.org/10.1016/j.porgcoat.2015.11.021 | |
dc.relation.references | 22. Costa R., Lameiras F., Nunes E. et al.: Ceram. Int., 2016, 42, 3465. https://doi.org/10.1016/j.ceramint.2015.10.145 | |
dc.relation.references | 23. AparicioM., Duran A.: J. Sol Gel Sci. Technol. 2004, 31, 103. https://doi.org/10.1023/B:JSST.0000047969.56298.d7 | |
dc.relation.references | 24. Kreuer K.: Chem. Mater., 1996, 8, 610. https://doi.org/10.1021/cm950192a | |
dc.relation.references | 25. Ying L., Jiang-Hong G., Yu-Sheng X.: Acta Phys.-Chim. Sin., 2001, 17, 792. https://doi.org/10.3866/PKU.WHXB20010906 | |
dc.relation.references | 26. Park Y.-I., Moon J., Kim H.: Electrochem. Solid State Lett., 2005, 8, A191. https://doi.org/10.1149/1.1862472 | |
dc.relation.references | 27. Kim H., Prakash S., Mustain W. et al.: J. Power Sour., 2009, 193, 562. https://doi.org/10.1016/j.jpowsour.2009.04.040 | |
dc.relation.referencesen | 1. Liu Y.-L., Polym. Chem., 2012, 3, 1373. https://doi.org/10.1039/P.2py20106b | |
dc.relation.referencesen | 2. Devanathan R., Energy Environ. Sci., 2008, 1, 101. https://doi.org/10.1039/b808149m | |
dc.relation.referencesen | 3. Xu T., Wu D., Wu L., Prog. Polym. Sci., 2008, 33, 894. https://doi.org/10.1016/j.progpolymsci.2008.07.002 | |
dc.relation.referencesen | 4. Ahmad H., Kamarudin S., Hasran U. et al., Int. J. Hydrogen Energy, 2010, 35, 2160. https://doi.org/10.1016/j.ijhydene.2009.12.054 | |
dc.relation.referencesen | 5. Elabd Y., Hickner M.:Macromolecules, 2011, 44, 1. https://doi.org/10.1021/ma101247c | |
dc.relation.referencesen | 6. Tarasevych M., Kuzov A., Int. Sci. J. for Alternative Energy and Ecology, 2010, 7, 86. | |
dc.relation.referencesen | 7. Aricò A., Srinivasan S., Antonucci V., Fuel Cells, 2001, 1, 133. https://doi.org/10.1002/1615-6854(200107)1:2<133::AIDFUCE133> 3.0.CO;2-5 | |
dc.relation.referencesen | 8. Silva V., Mendes A., Madeira L. et al., Advances in Fuel Cells, 2005, 24 p. | |
dc.relation.referencesen | 9. Dupuis A., Prog. Mater. Sci., 2011, 56, 289. https://doi.org/10.1016/j.pmatsci.2010.11.001 | |
dc.relation.referencesen | 10. Park C., Lee C., Guiver M. et al., Prog. Polym. Sci., 2011, 36, 1443. https://doi.org/10.1016/j.progpolymsci.2011.06.001 | |
dc.relation.referencesen | 11. Liang Z., Zhao T., Prabhuram J., J. Membr. Sci., 2006, 283, 219. https://doi.org/10.1016/j.memsci.2006.06.031 | |
dc.relation.referencesen | 12. Pu C., Huang W., Ley K. et al., J. Electrochem. Soc., 1995, 142, L119. https://doi.org/10.1149/1.2044333 | |
dc.relation.referencesen | 13. Peled E., Duvdevani T., Aharon A. et al., Solid State Lett., 2000, 3, 525. https://doi.org/10.1149/1.1391198 | |
dc.relation.referencesen | 14. Kim D., JoM., Nam S., J. Ind. Eng. Chem., 2015, 21, 36. https://doi.org/10.1016/j.jiec.2014.04.030 | |
dc.relation.referencesen | 15. Ogoshi T., Chujo Y., Composite Interfaces, 2005, 11, 539. https://doi.org/10.1163/1568554053148735 | |
dc.relation.referencesen | 16. Kim D., Lee B., Nam S., Thin Solid Films, 2013, 546, 431. https://doi.org/10.1016/j.tsf.2013.05.121 | |
dc.relation.referencesen | 17. Takahashi K., Umeda J., Hayashi K. et al., J. Mater. Sci., 2015, 51, 3398. https://doi.org/10.1007/s10853-015-9654-0 | |
dc.relation.referencesen | 18. TakemotoM., Hayashi K., SakamotoW., Polymer, 120, 264. https://doi.org/10.1016/j.polymer.2017.05.065 | |
dc.relation.referencesen | 19. Demydova Kh., Horechyy A., Yevchuk I. et al., Chem. Chem. Technol., 2018, 12, 58. https://doi.org/10.23939/chcht12.01.058 | |
dc.relation.referencesen | 20. Samaryk V., Voronov A., Tarnavchyk I. et al., Prog. Org. Coat., 2012, 74, 687. https://doi.org/10.1016/j.porgcoat.2011.07.015 | |
dc.relation.referencesen | 21. Kapoor P., Mhaske S., Joshi K., Prog. Org. Coat., 2016, 94, 124. https://doi.org/10.1016/j.porgcoat.2015.11.021 | |
dc.relation.referencesen | 22. Costa R., Lameiras F., Nunes E. et al., Ceram. Int., 2016, 42, 3465. https://doi.org/10.1016/j.ceramint.2015.10.145 | |
dc.relation.referencesen | 23. AparicioM., Duran A., J. Sol Gel Sci. Technol. 2004, 31, 103. https://doi.org/10.1023/B:JSST.0000047969.56298.d7 | |
dc.relation.referencesen | 24. Kreuer K., Chem. Mater., 1996, 8, 610. https://doi.org/10.1021/cm950192a | |
dc.relation.referencesen | 25. Ying L., Jiang-Hong G., Yu-Sheng X., Acta Phys.-Chim. Sin., 2001, 17, 792. https://doi.org/10.3866/PKU.WHXB20010906 | |
dc.relation.referencesen | 26. Park Y.-I., Moon J., Kim H., Electrochem. Solid State Lett., 2005, 8, A191. https://doi.org/10.1149/1.1862472 | |
dc.relation.referencesen | 27. Kim H., Prakash S., Mustain W. et al., J. Power Sour., 2009, 193, 562. https://doi.org/10.1016/j.jpowsour.2009.04.040 | |
dc.relation.uri | https://doi.org/10.1039/c2py20106b | |
dc.relation.uri | https://doi.org/10.1039/b808149m | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2008.07.002 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2009.12.054 | |
dc.relation.uri | https://doi.org/10.1021/ma101247c | |
dc.relation.uri | https://doi.org/10.1002/1615-6854(200107)1:2<133::AIDFUCE133> | |
dc.relation.uri | https://doi.org/10.1016/j.pmatsci.2010.11.001 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2011.06.001 | |
dc.relation.uri | https://doi.org/10.1016/j.memsci.2006.06.031 | |
dc.relation.uri | https://doi.org/10.1149/1.2044333 | |
dc.relation.uri | https://doi.org/10.1149/1.1391198 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2014.04.030 | |
dc.relation.uri | https://doi.org/10.1163/1568554053148735 | |
dc.relation.uri | https://doi.org/10.1016/j.tsf.2013.05.121 | |
dc.relation.uri | https://doi.org/10.1007/s10853-015-9654-0 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2017.05.065 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.01.058 | |
dc.relation.uri | https://doi.org/10.1016/j.porgcoat.2011.07.015 | |
dc.relation.uri | https://doi.org/10.1016/j.porgcoat.2015.11.021 | |
dc.relation.uri | https://doi.org/10.1016/j.ceramint.2015.10.145 | |
dc.relation.uri | https://doi.org/10.1023/B:JSST.0000047969.56298.d7 | |
dc.relation.uri | https://doi.org/10.1021/cm950192a | |
dc.relation.uri | https://doi.org/10.3866/PKU.WHXB20010906 | |
dc.relation.uri | https://doi.org/10.1149/1.1862472 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2009.04.040 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Zhyhailo M., Demchyna O., Rymsha K., Yevchuk I., Rachiy B., 2019 | |
dc.subject | протонна провідність | |
dc.subject | органонеорганічна мембрана | |
dc.subject | УФ-затвердження | |
dc.subject | золь-гель процес | |
dc.subject | акрилат | |
dc.subject | 3-метакрилоксипропілтриметоксисилан | |
dc.subject | proton conductivity | |
dc.subject | organic-inorganic membrane | |
dc.subject | UV-curing | |
dc.subject | sol-gel process | |
dc.subject | acrylate | |
dc.subject | 3-methacryloxypropyltrimethoxysilane | |
dc.title | Proton Conductive Organic-Inorganic Nanocomposite Membranes Derived by Sol-Gel Method | |
dc.title.alternative | Протонопровідні органо-неорганічні нанокомпозитні мембрани, одержані Золь-Гель методом | |
dc.type | Article |
Files
License bundle
1 - 1 of 1