Modeling of atomic systems and positioning of elements of noble gases of the periodic table by proportional division method

dc.citation.epage16
dc.citation.issue1
dc.citation.journalTitleКомп'ютерні системи проектування. Теорія і практика
dc.citation.spage11
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКособуцький, П.
dc.contributor.authorКаркульовська, М.
dc.contributor.authorKosoboutskyy, P.
dc.contributor.authorKarkulovska, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-03-08T09:39:56Z
dc.date.available2023-03-08T09:39:56Z
dc.date.created2021-08010
dc.date.issued2021-08010
dc.description.abstractДосліджено закономірності пропорційного поділу, на основі яких обґрунтовано можливість коректного застосування методу золотого перерізу для моделювання закономірностей атомних систем та позиціонування елементів благородних газів Періодичної системи. Показано, як за допомогою часткової реконструкції у таблиці Менделєєва елементи благородних газів можна розташувати вздовж ліній, дотичні нахилу яких у системі координат “атомний номер – відносна атомна маса” тісно узгоджуються із послідовністю обернених чисел Фібоначчі. У разі правильного нахилу осей дотичні нахилу відповідних прямих не змінюються.
dc.description.abstractThis paper studies regularities of proportional division, on the basis of which we show the possibility of effective application of the golden section method to modeling regularities of atomic systems and positioning of elements of noble gases of the periodic table. It is illustrated that by partial reconstruction of the Mendeleev tables, the elements of noble gases can be arranged along lines whose slope tangents in the coordinate system “the atomic number – the relative atomic mass” are in close agreement with the sequence of inverse Fibonacci numbers. It was shown that given the correct slope of axes, slope tangents of the corresponding lines does not change.
dc.format.extent11-16
dc.format.pages6
dc.identifier.citationKosoboutskyy P. Modeling of atomic systems and positioning of elements of noble gases of the periodic table by proportional division method / P. Kosoboutskyy, M. Karkulovska // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 1. — P. 11–16.
dc.identifier.citationenKosoboutskyy P., Karkulovska M. (2021) Modeling of atomic systems and positioning of elements of noble gases of the periodic table by proportional division method. Computer Design Systems. Theory and Practice (Lviv), vol. 3, no 1, pp. 11-16.
dc.identifier.doihttps://doi.org/10.23939/cds2021.01.011
dc.identifier.issn2707-6784
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57564
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп'ютерні системи проектування. Теорія і практика, 1 (3), 2021
dc.relation.ispartofComputer Design Systems. Theory and Practice, 1 (3), 2021
dc.relation.references1. Boeyens, J., Levendis, D. Number Theory and the Periodicity of Matter. Springer Science+Business Media B. V., 2008. https://doi.org/10.1007/978-1-4020-6660-3.
dc.relation.references2. Affleck, І. Nature, 2010, 464, 18. From Web Resource: https://doi.org/10.1038/464362a.
dc.relation.references3. Al-Ameri, T. Applied Sciences, 2018, 8, No. 1, 54. https://doi.org/10.3390/app8010054.
dc.relation.references4. Gratia, D. Physics-Uspekhi, 1988, 156, No. 2, 347. https://doi.org/10.3367/UFNr. 0156.198810e.0347.
dc.relation.references5. Grushina, N. V., Korolenko, P. V., Perestoronin, P. A. Preprint of the Physics Department of Moscow State University, 2007, No. 6.
dc.relation.references6. Beltrán, R., Gómez, F., Franco, R. et. al., Lat. Am. J. Phys. Educ., 2013, 7, No. 4, 621.
dc.relation.references7. Denardo, B. Am. J. Phys., 1999, 67No. 11, 981. https://doi.org/10.1119/1.16849.
dc.relation.references8. Srinivasan, T. Am. J. Phys., 1992, 60, No. 5, 461–462.
dc.relation.references9. Shechtman, D., Blech, I., Gratias, D. et. al., Phys. Rev. Lett., 1984, 53, 1951. https://doi.org/10.1103/PhysRevLett.53.1951.
dc.relation.references10. Rostami, A., Matloub, S. Laser Physics, 2004, 14, No. 12, 1475.
dc.relation.references11. Heyrovska, R. Molecular Physics, 2005, 103, 877. https://doi.org/10.1080/ 00268970412331333591.
dc.relation.references12. Pletser, V. Fibonacci Numbers and the Golden Ratio in Biology, Physics, Astrophysics, Chemistry and Technology: A Non-Exhaustive Review. From Web Resource: https://arxiv.org/ ftp/arxiv/papers/1801/1801.01369.pdf.
dc.relation.references13. Omotehinwa, T., Ramon, S. International J. of Computer and Information Technology, 2013, 04, No. 2, 630.
dc.relation.references14. Kharitonov, A. Applied Physics (Russia), 2007, No. 1, 5.
dc.relation.references15. Pashev, O., Nalci, S. J. Phys. A: math. theor., 2012, 45, 015303-15. https://doi.org/10.1088/1751-8113/45/1/015303
dc.relation.references16. Kayn, F., Williams, M., Anderson, D. Nanophotonics ·(Ed. D.L. Andrews, J.-M. Nunzi, A. Ostendorf. Proc. of SPIE. 9884, April 2016, 988434–35).
dc.relation.references17. Yakushko, S. I. Real physical processes. From Web Resource: http://ukr.rusphysics.ru/ files/Yakusko.Simmetrichnyi.pdf .
dc.relation.references18. Yakushko, S. I. Fibonacci regularity in the periodic system elements of D. I. Mendeleev. From Web Resource: http://ukr.rusphysics.ru/files/Yakuschko. Fibonachchieva%20sakonomernost.pdf.
dc.relation.references19. Shilo, N., Dinkov, A. Academy of Trinitarianism. M., 2007, 77–6567.
dc.relation.references20. Vorobyov, N.N. Fibonacci Numbers. M., 1961.
dc.relation.references21. Smirnov, V. S. The Golden Section – Basic the Mathematics and Physics in Future. The Spiral of the Universe Development, San-Peterb. RIO HOUIPT, 2002.
dc.relation.references22. Kosobutskyy, P. Jour. of Electronic Research and Application (Australia), 2019, 3, No. 3, 8.https://doi.org/10.26689/jera.v3i3.807
dc.relation.references23. Kosobutskyy, P. International Conference Algebra and Analysis with Application. July 1–4 2018, Ohrid, Republic of Macedonia.
dc.relation.references24. Kosobutskyy, P. S., Karkulovska, M. S. Bulletin of the Lviv Polytechnic National University. Collection of scientific works. Scientific publication. Series: Computer Design Systems. Theory and practice, 2018 No. 908, 75.
dc.relation.references25. Gaida, P. R. Atomic: a Textbook for student of Phys. spec. un-ty. Lviv: Lviv university, 1965.
dc.relation.referencesen1. Boeyens, J., Levendis, D. Number Theory and the Periodicity of Matter. Springer Science+Business Media B. V., 2008. https://doi.org/10.1007/978-1-4020-6660-3.
dc.relation.referencesen2. Affleck, I. Nature, 2010, 464, 18. From Web Resource: https://doi.org/10.1038/464362a.
dc.relation.referencesen3. Al-Ameri, T. Applied Sciences, 2018, 8, No. 1, 54. https://doi.org/10.3390/app8010054.
dc.relation.referencesen4. Gratia, D. Physics-Uspekhi, 1988, 156, No. 2, 347. https://doi.org/10.3367/UFNr. 0156.198810e.0347.
dc.relation.referencesen5. Grushina, N. V., Korolenko, P. V., Perestoronin, P. A. Preprint of the Physics Department of Moscow State University, 2007, No. 6.
dc.relation.referencesen6. Beltrán, R., Gómez, F., Franco, R. et. al., Lat. Am. J. Phys. Educ., 2013, 7, No. 4, 621.
dc.relation.referencesen7. Denardo, B. Am. J. Phys., 1999, 67No. 11, 981. https://doi.org/10.1119/1.16849.
dc.relation.referencesen8. Srinivasan, T. Am. J. Phys., 1992, 60, No. 5, 461–462.
dc.relation.referencesen9. Shechtman, D., Blech, I., Gratias, D. et. al., Phys. Rev. Lett., 1984, 53, 1951. https://doi.org/10.1103/PhysRevLett.53.1951.
dc.relation.referencesen10. Rostami, A., Matloub, S. Laser Physics, 2004, 14, No. 12, 1475.
dc.relation.referencesen11. Heyrovska, R. Molecular Physics, 2005, 103, 877. https://doi.org/10.1080/ 00268970412331333591.
dc.relation.referencesen12. Pletser, V. Fibonacci Numbers and the Golden Ratio in Biology, Physics, Astrophysics, Chemistry and Technology: A Non-Exhaustive Review. From Web Resource: https://arxiv.org/ ftp/arxiv/papers/1801/1801.01369.pdf.
dc.relation.referencesen13. Omotehinwa, T., Ramon, S. International J. of Computer and Information Technology, 2013, 04, No. 2, 630.
dc.relation.referencesen14. Kharitonov, A. Applied Physics (Russia), 2007, No. 1, 5.
dc.relation.referencesen15. Pashev, O., Nalci, S. J. Phys. A: math. theor., 2012, 45, 015303-15. https://doi.org/10.1088/1751-8113/45/1/015303
dc.relation.referencesen16. Kayn, F., Williams, M., Anderson, D. Nanophotonics ·(Ed. D.L. Andrews, J.-M. Nunzi, A. Ostendorf. Proc. of SPIE. 9884, April 2016, 988434–35).
dc.relation.referencesen17. Yakushko, S. I. Real physical processes. From Web Resource: http://ukr.rusphysics.ru/ files/Yakusko.Simmetrichnyi.pdf .
dc.relation.referencesen18. Yakushko, S. I. Fibonacci regularity in the periodic system elements of D. I. Mendeleev. From Web Resource: http://ukr.rusphysics.ru/files/Yakuschko. Fibonachchieva%20sakonomernost.pdf.
dc.relation.referencesen19. Shilo, N., Dinkov, A. Academy of Trinitarianism. M., 2007, 77–6567.
dc.relation.referencesen20. Vorobyov, N.N. Fibonacci Numbers. M., 1961.
dc.relation.referencesen21. Smirnov, V. S. The Golden Section – Basic the Mathematics and Physics in Future. The Spiral of the Universe Development, San-Peterb. RIO HOUIPT, 2002.
dc.relation.referencesen22. Kosobutskyy, P. Jour. of Electronic Research and Application (Australia), 2019, 3, No. 3, 8.https://doi.org/10.26689/jera.v3i3.807
dc.relation.referencesen23. Kosobutskyy, P. International Conference Algebra and Analysis with Application. July 1–4 2018, Ohrid, Republic of Macedonia.
dc.relation.referencesen24. Kosobutskyy, P. S., Karkulovska, M. S. Bulletin of the Lviv Polytechnic National University. Collection of scientific works. Scientific publication. Series: Computer Design Systems. Theory and practice, 2018 No. 908, 75.
dc.relation.referencesen25. Gaida, P. R. Atomic: a Textbook for student of Phys. spec. un-ty. Lviv: Lviv university, 1965.
dc.relation.urihttps://doi.org/10.1007/978-1-4020-6660-3
dc.relation.urihttps://doi.org/10.1038/464362a
dc.relation.urihttps://doi.org/10.3390/app8010054
dc.relation.urihttps://doi.org/10.3367/UFNr
dc.relation.urihttps://doi.org/10.1119/1.16849
dc.relation.urihttps://doi.org/10.1103/PhysRevLett.53.1951
dc.relation.urihttps://doi.org/10.1080/
dc.relation.urihttps://arxiv.org/
dc.relation.urihttps://doi.org/10.1088/1751-8113/45/1/015303
dc.relation.urihttp://ukr.rusphysics.ru/
dc.relation.urihttp://ukr.rusphysics.ru/files/Yakuschko
dc.relation.urihttps://doi.org/10.26689/jera.v3i3.807
dc.rights.holder© Національний університет „Львівська політехніка“, 2021
dc.rights.holder© Kosoboutskyy P., Karkulovska M., 2021
dc.subjectзолотий переріз
dc.subjectчисла Фібоначчі
dc.subjectпропорційний поділ
dc.subjectатом
dc.subjectПеріодична система
dc.subjectGolden section
dc.subjectFibonacci numbers
dc.subjectproportional division
dc.subjectatom
dc.subjectperiodic table
dc.subject.udc519.2 (035)
dc.subject.udc519.213.1
dc.subject.udc519.222
dc.titleModeling of atomic systems and positioning of elements of noble gases of the periodic table by proportional division method
dc.title.alternativeМоделювання атомних систем та позиціонування елементів благородних газів Періодичної системи методом пропорційного поділу
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2021v3n1_Kosoboutskyy_P-Modeling_of_atomic_systems_11-16.pdf
Size:
214.2 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: