Modeling of atomic systems and positioning of elements of noble gases of the periodic table by proportional division method
dc.citation.epage | 16 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп'ютерні системи проектування. Теорія і практика | |
dc.citation.spage | 11 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кособуцький, П. | |
dc.contributor.author | Каркульовська, М. | |
dc.contributor.author | Kosoboutskyy, P. | |
dc.contributor.author | Karkulovska, M. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-03-08T09:39:56Z | |
dc.date.available | 2023-03-08T09:39:56Z | |
dc.date.created | 2021-08010 | |
dc.date.issued | 2021-08010 | |
dc.description.abstract | Досліджено закономірності пропорційного поділу, на основі яких обґрунтовано можливість коректного застосування методу золотого перерізу для моделювання закономірностей атомних систем та позиціонування елементів благородних газів Періодичної системи. Показано, як за допомогою часткової реконструкції у таблиці Менделєєва елементи благородних газів можна розташувати вздовж ліній, дотичні нахилу яких у системі координат “атомний номер – відносна атомна маса” тісно узгоджуються із послідовністю обернених чисел Фібоначчі. У разі правильного нахилу осей дотичні нахилу відповідних прямих не змінюються. | |
dc.description.abstract | This paper studies regularities of proportional division, on the basis of which we show the possibility of effective application of the golden section method to modeling regularities of atomic systems and positioning of elements of noble gases of the periodic table. It is illustrated that by partial reconstruction of the Mendeleev tables, the elements of noble gases can be arranged along lines whose slope tangents in the coordinate system “the atomic number – the relative atomic mass” are in close agreement with the sequence of inverse Fibonacci numbers. It was shown that given the correct slope of axes, slope tangents of the corresponding lines does not change. | |
dc.format.extent | 11-16 | |
dc.format.pages | 6 | |
dc.identifier.citation | Kosoboutskyy P. Modeling of atomic systems and positioning of elements of noble gases of the periodic table by proportional division method / P. Kosoboutskyy, M. Karkulovska // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 1. — P. 11–16. | |
dc.identifier.citationen | Kosoboutskyy P., Karkulovska M. (2021) Modeling of atomic systems and positioning of elements of noble gases of the periodic table by proportional division method. Computer Design Systems. Theory and Practice (Lviv), vol. 3, no 1, pp. 11-16. | |
dc.identifier.doi | https://doi.org/10.23939/cds2021.01.011 | |
dc.identifier.issn | 2707-6784 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57564 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп'ютерні системи проектування. Теорія і практика, 1 (3), 2021 | |
dc.relation.ispartof | Computer Design Systems. Theory and Practice, 1 (3), 2021 | |
dc.relation.references | 1. Boeyens, J., Levendis, D. Number Theory and the Periodicity of Matter. Springer Science+Business Media B. V., 2008. https://doi.org/10.1007/978-1-4020-6660-3. | |
dc.relation.references | 2. Affleck, І. Nature, 2010, 464, 18. From Web Resource: https://doi.org/10.1038/464362a. | |
dc.relation.references | 3. Al-Ameri, T. Applied Sciences, 2018, 8, No. 1, 54. https://doi.org/10.3390/app8010054. | |
dc.relation.references | 4. Gratia, D. Physics-Uspekhi, 1988, 156, No. 2, 347. https://doi.org/10.3367/UFNr. 0156.198810e.0347. | |
dc.relation.references | 5. Grushina, N. V., Korolenko, P. V., Perestoronin, P. A. Preprint of the Physics Department of Moscow State University, 2007, No. 6. | |
dc.relation.references | 6. Beltrán, R., Gómez, F., Franco, R. et. al., Lat. Am. J. Phys. Educ., 2013, 7, No. 4, 621. | |
dc.relation.references | 7. Denardo, B. Am. J. Phys., 1999, 67No. 11, 981. https://doi.org/10.1119/1.16849. | |
dc.relation.references | 8. Srinivasan, T. Am. J. Phys., 1992, 60, No. 5, 461–462. | |
dc.relation.references | 9. Shechtman, D., Blech, I., Gratias, D. et. al., Phys. Rev. Lett., 1984, 53, 1951. https://doi.org/10.1103/PhysRevLett.53.1951. | |
dc.relation.references | 10. Rostami, A., Matloub, S. Laser Physics, 2004, 14, No. 12, 1475. | |
dc.relation.references | 11. Heyrovska, R. Molecular Physics, 2005, 103, 877. https://doi.org/10.1080/ 00268970412331333591. | |
dc.relation.references | 12. Pletser, V. Fibonacci Numbers and the Golden Ratio in Biology, Physics, Astrophysics, Chemistry and Technology: A Non-Exhaustive Review. From Web Resource: https://arxiv.org/ ftp/arxiv/papers/1801/1801.01369.pdf. | |
dc.relation.references | 13. Omotehinwa, T., Ramon, S. International J. of Computer and Information Technology, 2013, 04, No. 2, 630. | |
dc.relation.references | 14. Kharitonov, A. Applied Physics (Russia), 2007, No. 1, 5. | |
dc.relation.references | 15. Pashev, O., Nalci, S. J. Phys. A: math. theor., 2012, 45, 015303-15. https://doi.org/10.1088/1751-8113/45/1/015303 | |
dc.relation.references | 16. Kayn, F., Williams, M., Anderson, D. Nanophotonics ·(Ed. D.L. Andrews, J.-M. Nunzi, A. Ostendorf. Proc. of SPIE. 9884, April 2016, 988434–35). | |
dc.relation.references | 17. Yakushko, S. I. Real physical processes. From Web Resource: http://ukr.rusphysics.ru/ files/Yakusko.Simmetrichnyi.pdf . | |
dc.relation.references | 18. Yakushko, S. I. Fibonacci regularity in the periodic system elements of D. I. Mendeleev. From Web Resource: http://ukr.rusphysics.ru/files/Yakuschko. Fibonachchieva%20sakonomernost.pdf. | |
dc.relation.references | 19. Shilo, N., Dinkov, A. Academy of Trinitarianism. M., 2007, 77–6567. | |
dc.relation.references | 20. Vorobyov, N.N. Fibonacci Numbers. M., 1961. | |
dc.relation.references | 21. Smirnov, V. S. The Golden Section – Basic the Mathematics and Physics in Future. The Spiral of the Universe Development, San-Peterb. RIO HOUIPT, 2002. | |
dc.relation.references | 22. Kosobutskyy, P. Jour. of Electronic Research and Application (Australia), 2019, 3, No. 3, 8.https://doi.org/10.26689/jera.v3i3.807 | |
dc.relation.references | 23. Kosobutskyy, P. International Conference Algebra and Analysis with Application. July 1–4 2018, Ohrid, Republic of Macedonia. | |
dc.relation.references | 24. Kosobutskyy, P. S., Karkulovska, M. S. Bulletin of the Lviv Polytechnic National University. Collection of scientific works. Scientific publication. Series: Computer Design Systems. Theory and practice, 2018 No. 908, 75. | |
dc.relation.references | 25. Gaida, P. R. Atomic: a Textbook for student of Phys. spec. un-ty. Lviv: Lviv university, 1965. | |
dc.relation.referencesen | 1. Boeyens, J., Levendis, D. Number Theory and the Periodicity of Matter. Springer Science+Business Media B. V., 2008. https://doi.org/10.1007/978-1-4020-6660-3. | |
dc.relation.referencesen | 2. Affleck, I. Nature, 2010, 464, 18. From Web Resource: https://doi.org/10.1038/464362a. | |
dc.relation.referencesen | 3. Al-Ameri, T. Applied Sciences, 2018, 8, No. 1, 54. https://doi.org/10.3390/app8010054. | |
dc.relation.referencesen | 4. Gratia, D. Physics-Uspekhi, 1988, 156, No. 2, 347. https://doi.org/10.3367/UFNr. 0156.198810e.0347. | |
dc.relation.referencesen | 5. Grushina, N. V., Korolenko, P. V., Perestoronin, P. A. Preprint of the Physics Department of Moscow State University, 2007, No. 6. | |
dc.relation.referencesen | 6. Beltrán, R., Gómez, F., Franco, R. et. al., Lat. Am. J. Phys. Educ., 2013, 7, No. 4, 621. | |
dc.relation.referencesen | 7. Denardo, B. Am. J. Phys., 1999, 67No. 11, 981. https://doi.org/10.1119/1.16849. | |
dc.relation.referencesen | 8. Srinivasan, T. Am. J. Phys., 1992, 60, No. 5, 461–462. | |
dc.relation.referencesen | 9. Shechtman, D., Blech, I., Gratias, D. et. al., Phys. Rev. Lett., 1984, 53, 1951. https://doi.org/10.1103/PhysRevLett.53.1951. | |
dc.relation.referencesen | 10. Rostami, A., Matloub, S. Laser Physics, 2004, 14, No. 12, 1475. | |
dc.relation.referencesen | 11. Heyrovska, R. Molecular Physics, 2005, 103, 877. https://doi.org/10.1080/ 00268970412331333591. | |
dc.relation.referencesen | 12. Pletser, V. Fibonacci Numbers and the Golden Ratio in Biology, Physics, Astrophysics, Chemistry and Technology: A Non-Exhaustive Review. From Web Resource: https://arxiv.org/ ftp/arxiv/papers/1801/1801.01369.pdf. | |
dc.relation.referencesen | 13. Omotehinwa, T., Ramon, S. International J. of Computer and Information Technology, 2013, 04, No. 2, 630. | |
dc.relation.referencesen | 14. Kharitonov, A. Applied Physics (Russia), 2007, No. 1, 5. | |
dc.relation.referencesen | 15. Pashev, O., Nalci, S. J. Phys. A: math. theor., 2012, 45, 015303-15. https://doi.org/10.1088/1751-8113/45/1/015303 | |
dc.relation.referencesen | 16. Kayn, F., Williams, M., Anderson, D. Nanophotonics ·(Ed. D.L. Andrews, J.-M. Nunzi, A. Ostendorf. Proc. of SPIE. 9884, April 2016, 988434–35). | |
dc.relation.referencesen | 17. Yakushko, S. I. Real physical processes. From Web Resource: http://ukr.rusphysics.ru/ files/Yakusko.Simmetrichnyi.pdf . | |
dc.relation.referencesen | 18. Yakushko, S. I. Fibonacci regularity in the periodic system elements of D. I. Mendeleev. From Web Resource: http://ukr.rusphysics.ru/files/Yakuschko. Fibonachchieva%20sakonomernost.pdf. | |
dc.relation.referencesen | 19. Shilo, N., Dinkov, A. Academy of Trinitarianism. M., 2007, 77–6567. | |
dc.relation.referencesen | 20. Vorobyov, N.N. Fibonacci Numbers. M., 1961. | |
dc.relation.referencesen | 21. Smirnov, V. S. The Golden Section – Basic the Mathematics and Physics in Future. The Spiral of the Universe Development, San-Peterb. RIO HOUIPT, 2002. | |
dc.relation.referencesen | 22. Kosobutskyy, P. Jour. of Electronic Research and Application (Australia), 2019, 3, No. 3, 8.https://doi.org/10.26689/jera.v3i3.807 | |
dc.relation.referencesen | 23. Kosobutskyy, P. International Conference Algebra and Analysis with Application. July 1–4 2018, Ohrid, Republic of Macedonia. | |
dc.relation.referencesen | 24. Kosobutskyy, P. S., Karkulovska, M. S. Bulletin of the Lviv Polytechnic National University. Collection of scientific works. Scientific publication. Series: Computer Design Systems. Theory and practice, 2018 No. 908, 75. | |
dc.relation.referencesen | 25. Gaida, P. R. Atomic: a Textbook for student of Phys. spec. un-ty. Lviv: Lviv university, 1965. | |
dc.relation.uri | https://doi.org/10.1007/978-1-4020-6660-3 | |
dc.relation.uri | https://doi.org/10.1038/464362a | |
dc.relation.uri | https://doi.org/10.3390/app8010054 | |
dc.relation.uri | https://doi.org/10.3367/UFNr | |
dc.relation.uri | https://doi.org/10.1119/1.16849 | |
dc.relation.uri | https://doi.org/10.1103/PhysRevLett.53.1951 | |
dc.relation.uri | https://doi.org/10.1080/ | |
dc.relation.uri | https://arxiv.org/ | |
dc.relation.uri | https://doi.org/10.1088/1751-8113/45/1/015303 | |
dc.relation.uri | http://ukr.rusphysics.ru/ | |
dc.relation.uri | http://ukr.rusphysics.ru/files/Yakuschko | |
dc.relation.uri | https://doi.org/10.26689/jera.v3i3.807 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.rights.holder | © Kosoboutskyy P., Karkulovska M., 2021 | |
dc.subject | золотий переріз | |
dc.subject | числа Фібоначчі | |
dc.subject | пропорційний поділ | |
dc.subject | атом | |
dc.subject | Періодична система | |
dc.subject | Golden section | |
dc.subject | Fibonacci numbers | |
dc.subject | proportional division | |
dc.subject | atom | |
dc.subject | periodic table | |
dc.subject.udc | 519.2 (035) | |
dc.subject.udc | 519.213.1 | |
dc.subject.udc | 519.222 | |
dc.title | Modeling of atomic systems and positioning of elements of noble gases of the periodic table by proportional division method | |
dc.title.alternative | Моделювання атомних систем та позиціонування елементів благородних газів Періодичної системи методом пропорційного поділу | |
dc.type | Article |