On an invariant of a non-stationary model of pipelines gas flow

dc.citation.epage128
dc.citation.issue1
dc.citation.spage116
dc.contributor.affiliationЦентр математичного моделювання Інституту прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
dc.contributor.affiliation“Науково-дослідний інститут транспорту газу” ПАТ “Укртрансгаз”
dc.contributor.affiliationCentre of Mathematical Modelling of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NAS of Ukraine
dc.contributor.affiliationResearch and Design Institute of Gas Transport of PJSC “Ukrtransgaz”
dc.contributor.authorП’янило, Я.
dc.contributor.authorПритула, Н.
dc.contributor.authorПритула, М.
dc.contributor.authorХимко, О.
dc.contributor.authorPyanylo, Ya.
dc.contributor.authorPrytula, N.
dc.contributor.authorPrytula, M.
dc.contributor.authorKhymko, O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-27T09:45:17Z
dc.date.available2020-02-27T09:45:17Z
dc.date.created2019-02-26
dc.date.issued2019-02-26
dc.description.abstractРозглянуто проблему аналізу балансу газу в об’єктах газотранспортної системи та фактори впливу на точнiсть його встановлення. Показано, що проблему точності розрахунку окремих балансових показників можна ефективно розв’язати, використовуючи встановлені інваріанти математичної моделі руху газу. Проведені числові експерименти підтвердили достатню точність запропонованого підходу.
dc.description.abstractA problem of gas balance analysis in the gas transportation system objects and the factors of influence on the accuracy of its installation are considered. It is shown that the problem of accuracy of calculation of the individual balance indicators can be effectively solved. For this purpose, the invariants of the mathematical model of gas flow are used. The carried out computational experiments have confirmed the sufficient accuracy of the suggested approach.
dc.format.extent116-128
dc.format.pages13
dc.identifier.citationOn an invariant of a non-stationary model of pipelines gas flow / Ya. Pyanylo, N. Prytula, M. Prytula, O. Khymko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 116–128.
dc.identifier.citationenOn an invariant of a non-stationary model of pipelines gas flow / Ya. Pyanylo, N. Prytula, M. Prytula, O. Khymko // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 116–128.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46147
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (6), 2019
dc.relation.references1. NavarroA., BegovichO., S´anchez J., BesanconG. Real-Time Leak Isolation Based on State Estimation with Fitting Loss Coefficient Calibration in a Plastic Pipeline. Asian Journal of Control. 19, 255–265 (2017).
dc.relation.references2. Murvay P. S., Silea I.A. Survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries. 25, 966–973 (2012).
dc.relation.references3. AsgariH.R., MaghrebiM. F. Application of nodal pressure measurements in leak detection. Flow Measurement and Instrumentation. 50, 128–134 (2016).
dc.relation.references4. TaoW., DongyingW., YuP., Wei F. Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm. Measurement Science and Technology. 26 (2), 095002 (2015). DanetiM. On using double power spectral density information for leak detection. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town. 1162–1167 (2013).
dc.relation.references5. EkuakilleA. L., Vergallo P. Decimated signal diagonalization method for improved spectral leak detection in pipelines. IEEE Sensors Journal. 14 (6), 1741–1748 (2014).
dc.relation.references6. HouC.X., Zhang E.H. Pipeline leak detection based on double sensor negative pressure wave. Applied Mechanics and Materials. 313, 1225–1228 (2013).
dc.relation.references7. AkopovaG., Dorokhova E., Popov P. Estimation of volumes of methane losses with leaks from the technological equipment of gas transportation objects of USO “Gazprom”. Scientific-technical collection of News Gas Science. 2 (13), 63–67 (2013).
dc.relation.references8. PyanyloYa.D., PrytulaM.G., PrytulaN.M. Models of mass transfer in gas transmission systems. Mathematical modeling and computing. 1 (1), 84–96 (2014).
dc.relation.references9. PyanyloYa., PrytulaM., PrytulaN. Mathematical models of unstable gas motion in objects of gas transmission systems. Physical-mathematical modeling and informational technologies. 4, 69–77 (2006).
dc.relation.references10. AltshulA.D. Hydraulic resistance. Moscow, Nedra (1982), (in Russian).
dc.relation.references11. SinchukYu., PrytulaN., PrytulaM. Modeling of non-stationary modes of gas networks. Bulletin of Lviv Polytechnic National University. Computer Sciences and Informational Technologies. 663, 128–132 (2010).
dc.relation.references12. DitkinV., PrudnikovA. Handbook of operational calculus. Moscow, High school (1965), (in Russian).
dc.relation.referencesen1. NavarroA., BegovichO., S´anchez J., BesanconG. Real-Time Leak Isolation Based on State Estimation with Fitting Loss Coefficient Calibration in a Plastic Pipeline. Asian Journal of Control. 19, 255–265 (2017).
dc.relation.referencesen2. Murvay P. S., Silea I.A. Survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries. 25, 966–973 (2012).
dc.relation.referencesen3. AsgariH.R., MaghrebiM. F. Application of nodal pressure measurements in leak detection. Flow Measurement and Instrumentation. 50, 128–134 (2016).
dc.relation.referencesen4. TaoW., DongyingW., YuP., Wei F. Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm. Measurement Science and Technology. 26 (2), 095002 (2015). DanetiM. On using double power spectral density information for leak detection. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town. 1162–1167 (2013).
dc.relation.referencesen5. EkuakilleA. L., Vergallo P. Decimated signal diagonalization method for improved spectral leak detection in pipelines. IEEE Sensors Journal. 14 (6), 1741–1748 (2014).
dc.relation.referencesen6. HouC.X., Zhang E.H. Pipeline leak detection based on double sensor negative pressure wave. Applied Mechanics and Materials. 313, 1225–1228 (2013).
dc.relation.referencesen7. AkopovaG., Dorokhova E., Popov P. Estimation of volumes of methane losses with leaks from the technological equipment of gas transportation objects of USO "Gazprom". Scientific-technical collection of News Gas Science. 2 (13), 63–67 (2013).
dc.relation.referencesen8. PyanyloYa.D., PrytulaM.G., PrytulaN.M. Models of mass transfer in gas transmission systems. Mathematical modeling and computing. 1 (1), 84–96 (2014).
dc.relation.referencesen9. PyanyloYa., PrytulaM., PrytulaN. Mathematical models of unstable gas motion in objects of gas transmission systems. Physical-mathematical modeling and informational technologies. 4, 69–77 (2006).
dc.relation.referencesen10. AltshulA.D. Hydraulic resistance. Moscow, Nedra (1982), (in Russian).
dc.relation.referencesen11. SinchukYu., PrytulaN., PrytulaM. Modeling of non-stationary modes of gas networks. Bulletin of Lviv Polytechnic National University. Computer Sciences and Informational Technologies. 663, 128–132 (2010).
dc.relation.referencesen12. DitkinV., PrudnikovA. Handbook of operational calculus. Moscow, High school (1965), (in Russian).
dc.rights.holderCMM IAPMM NAS
dc.rights.holder© 2019 Lviv Polytechnic National University
dc.subjectбаланс газу
dc.subjectгерметичність газопроводу
dc.subjectалгоритмічний спосіб
dc.subjectвитоки газу
dc.subjectматематична модель руху газу
dc.subjectgas balance
dc.subjectgas pipeline tightness
dc.subjectalgorithmic method
dc.subjectgas leakages
dc.subjectgas flow mathematical model
dc.subject.udc622.692.4
dc.subject.udc622.691.24
dc.titleOn an invariant of a non-stationary model of pipelines gas flow
dc.title.alternativeПро один інваріант моделі нестаціонарного газового потоку в трубопроводах
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v6n1_Pyanylo_Ya-On_an_invariant_of_a_non_116-128.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v6n1_Pyanylo_Ya-On_an_invariant_of_a_non_116-128__COVER.png
Size:
439.4 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.04 KB
Format:
Plain Text
Description: