Image restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide & conquer technique

dc.citation.epage559
dc.citation.issue3
dc.citation.spage549
dc.contributor.affiliationУніверситет Мохаммеда Першого
dc.contributor.affiliationУніверситет Каді Айяд
dc.contributor.affiliationUniversity of Mohammed First
dc.contributor.affiliationCadi Ayyad University
dc.contributor.authorАлаа, К.
dc.contributor.authorАтунті, М.
dc.contributor.authorЗірхем, М.
dc.contributor.authorAlaa, K.
dc.contributor.authorAtounti, M.
dc.contributor.authorZirhem, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-25T07:19:12Z
dc.date.available2023-10-25T07:19:12Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractУ статті представлено новий алгоритм цифрової обробки зображень, які зашумлені змішаним гаусово-імпульсним шумом. Математична модель базується на техніці “розділяй і володарюй” у поєднанні з реакційно-дифузійною системою. Спочатку зображення розкладається на низькочастотні та високочастотні компоненти, згортаючи кожну із заздалегідь визначеним згортковим фільтром. Далі використовується проста схема з різними вагами, щоб інтегрувати та зібрати ці оброблені фрагменти зображення у відфільтроване зображення. Нарешті, застосовується наша реакційно-дифузійна система, щоб збільшити контрастність зображення. Описано ряд експериментальних результатів, щоб проілюструвати роботу запропонованого алгоритму та показати, що він дуже ефективний при усуненні змішаного гаусово-імпульсного шуму, для збільшення контрастності зображення та збереження країв.
dc.description.abstractIn this article, we present a new algorithm for digital image processing noised by mixed Gaussian-impulse noise. Our mathematical model is based on the divide and conquer technique coupled with a reaction-diffusion system. We first decompose our image into low and high-frequency components by convolving each with a predefined convolutional filter. Further, we use a simple scheme of different weights to integrate and collect these processed sub-images into a filtered image. Finally, we apply our Reaction-Diffusion system to increase the contrast in the image. A number of experimental results are described to illustrate the performance of our algorithm and show that it is very effective in eliminating mixed Gaussian-impulse noise, increasing the contrast of the image and preserving the edges.
dc.format.extent549-559
dc.format.pages11
dc.identifier.citationAlaa K. Image restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide & conquer technique / K. Alaa, M. Atounti, M. Zirhem // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 549–559.
dc.identifier.citationenAlaa K. Image restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide & conquer technique / K. Alaa, M. Atounti, M. Zirhem // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 3. — P. 549–559.
dc.identifier.doidoi.org/10.23939/mmc2021.03.549
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60408
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 3 (8), 2021
dc.relation.references[1] Tomasi C., Manduchi R. Bilateral filtering for gray and color images. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 839–846 (1998).
dc.relation.references[2] Buades A., Coll B., Morel J.-M. A non-local algorithm for image denoising. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). 60–65 (2005).
dc.relation.references[3] Helstrom C. W. Image restoration by the method of least squares. Journal of the Optical Society of America. 57 (3), 297–303 (1967).
dc.relation.references[4] Zirhem M., Alaa N. Texture synthesis by reaction diffusion process. Annals of the University of Craiova, Mathematics and Computer Science Series. 42, 56–69 (2015).
dc.relation.references[5] Alaa N., Zirhem M. Entropy solution for a fourth-order nonlinear degenerate problem for image decomposition. J. Adv. Math. Stud. 11, 412–427 (2018).
dc.relation.references[6] Alaa N., Zirhem M. Bio-inspired reaction diffusion system applied to image restoration. International Journal of Bio-inspired Computation. 12 (2), 128–137 (2018).
dc.relation.references[7] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Patterns Analysis and Machine Intelligence. 12 (7), 629–639 (1990).
dc.relation.references[8] Alvarez L., Lions P. L., Morel J. M. Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM Journal of Numerical Analysis. 29 (3), 845–866 (1992).
dc.relation.references[9] Catt´e F., Lions P. L., Morel J. M., Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis. 29 (1), 182–193 (1992).
dc.relation.references[10] Morfu S. On some applications of diffusion processes for image processing. Physics Letters A. 373 (29), 2438–2444 (2009).
dc.relation.references[11] Ait Oussous M., Alaa N., Ait Khouya Y. Anisotropic and nonlinear diffusion applied to image enhancement and edge detection. International Journal of Computer Applications in Technology. 49 (2), 122–133 (2014).
dc.relation.references[12] Mallat S., Hwang W. L. Singularity detection and processing with wavelets. IEEE Transactions on Information Theory. 38 (2), 617–643 (1992).
dc.relation.references[13] Agaian S., McClendon S. A. Novel medical image enhancement algorithms. Proc. SPIE 7532, Image Processing: Algorithms and Systems VIII, 75320W (2010).
dc.relation.references[14] Turing A. M. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B. 237, 37–72 (1952).
dc.relation.references[15] Prigogine I., Nicolis G. Biological order, structure and instabilities. Quart. Rev. Biophys. 4, 107–148 (1971).
dc.relation.references[16] Gierer A., Meinhardt H. A theory of biological pattern formation. Kybernetik. 12, 30–39 (1970).
dc.relation.references[17] Ambrosio B., Aziz-Alaoui M. A. Synchronisation dans un r´eseau d’´equations aux d´eriv´ees partielles de type Fitzhugh-Nagumo g´en´eralis´e, ´equations aux d´eriv´ees partielles et leurs applications. Actes du colloque Edp-Normandie. 119–131 (2012).
dc.relation.references[18] Nomura A., Ichikawa M., Sianipar R. H., Miike H. Reaction-Diffusion Algorithm for Vision Systems. Vision Systems: Segmentation and Pattern Recognition. 61–80 (2007).
dc.relation.references[19] Charbonnier P., Feraud L., Aubert G., Barlaud M. Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image processing. 6 (2), 298–311 (1997).
dc.relation.references[20] Lopez-Rubio E. Restoration of images corrupted by gaussian and uniform impulsive noise. Pattern Recognition. 43 (5), 1835–1846 (2010).
dc.relation.references[21] Liu J., Huan Z., Huang H., Zhang H. An adaptive method for recovering image from mixed noisy data. International Journal of Computer Vision. 85, 182–191 (2009).
dc.relation.references[22] Rodriguez P., Rojas R. A., Wohlberg B. Mixed gaussian-impulse noise image restoration via total variation. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1077–1080 (2012).
dc.relation.references[23] Liu J., Tai X., Huang H., Huan Z. A Weighted Dictionary Learning Model for Denoising Images Corrupted by Mixed Noise. IEEE Transactions on Image Processing. 22 (3), 1108–1120 (2012).
dc.relation.references[24] Stout Q. F. Supporting divide and conquer algorithm in image processing. J. of Parallel and Distributed Computing. 4 (1), 95–115 (1987).
dc.relation.references[25] Bacquey N. Packing problem: A divide and conquer algorithm on cellular automata. Automata and JAC. 1–10 (2012).
dc.relation.references26] Zhuang P., Fu X., Huang Y., Ding X. Image enhancement using divide and conquer strategy. Journal of Visual Communication and Image Representation. 45, 137–146 (2017).
dc.relation.referencesen[1] Tomasi C., Manduchi R. Bilateral filtering for gray and color images. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271). 839–846 (1998).
dc.relation.referencesen[2] Buades A., Coll B., Morel J.-M. A non-local algorithm for image denoising. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). 60–65 (2005).
dc.relation.referencesen[3] Helstrom C. W. Image restoration by the method of least squares. Journal of the Optical Society of America. 57 (3), 297–303 (1967).
dc.relation.referencesen[4] Zirhem M., Alaa N. Texture synthesis by reaction diffusion process. Annals of the University of Craiova, Mathematics and Computer Science Series. 42, 56–69 (2015).
dc.relation.referencesen[5] Alaa N., Zirhem M. Entropy solution for a fourth-order nonlinear degenerate problem for image decomposition. J. Adv. Math. Stud. 11, 412–427 (2018).
dc.relation.referencesen[6] Alaa N., Zirhem M. Bio-inspired reaction diffusion system applied to image restoration. International Journal of Bio-inspired Computation. 12 (2), 128–137 (2018).
dc.relation.referencesen[7] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Patterns Analysis and Machine Intelligence. 12 (7), 629–639 (1990).
dc.relation.referencesen[8] Alvarez L., Lions P. L., Morel J. M. Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM Journal of Numerical Analysis. 29 (3), 845–866 (1992).
dc.relation.referencesen[9] Catt´e F., Lions P. L., Morel J. M., Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis. 29 (1), 182–193 (1992).
dc.relation.referencesen[10] Morfu S. On some applications of diffusion processes for image processing. Physics Letters A. 373 (29), 2438–2444 (2009).
dc.relation.referencesen[11] Ait Oussous M., Alaa N., Ait Khouya Y. Anisotropic and nonlinear diffusion applied to image enhancement and edge detection. International Journal of Computer Applications in Technology. 49 (2), 122–133 (2014).
dc.relation.referencesen[12] Mallat S., Hwang W. L. Singularity detection and processing with wavelets. IEEE Transactions on Information Theory. 38 (2), 617–643 (1992).
dc.relation.referencesen[13] Agaian S., McClendon S. A. Novel medical image enhancement algorithms. Proc. SPIE 7532, Image Processing: Algorithms and Systems VIII, 75320W (2010).
dc.relation.referencesen[14] Turing A. M. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B. 237, 37–72 (1952).
dc.relation.referencesen[15] Prigogine I., Nicolis G. Biological order, structure and instabilities. Quart. Rev. Biophys. 4, 107–148 (1971).
dc.relation.referencesen[16] Gierer A., Meinhardt H. A theory of biological pattern formation. Kybernetik. 12, 30–39 (1970).
dc.relation.referencesen[17] Ambrosio B., Aziz-Alaoui M. A. Synchronisation dans un r´eseau d’´equations aux d´eriv´ees partielles de type Fitzhugh-Nagumo g´en´eralis´e, ´equations aux d´eriv´ees partielles et leurs applications. Actes du colloque Edp-Normandie. 119–131 (2012).
dc.relation.referencesen[18] Nomura A., Ichikawa M., Sianipar R. H., Miike H. Reaction-Diffusion Algorithm for Vision Systems. Vision Systems: Segmentation and Pattern Recognition. 61–80 (2007).
dc.relation.referencesen[19] Charbonnier P., Feraud L., Aubert G., Barlaud M. Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image processing. 6 (2), 298–311 (1997).
dc.relation.referencesen[20] Lopez-Rubio E. Restoration of images corrupted by gaussian and uniform impulsive noise. Pattern Recognition. 43 (5), 1835–1846 (2010).
dc.relation.referencesen[21] Liu J., Huan Z., Huang H., Zhang H. An adaptive method for recovering image from mixed noisy data. International Journal of Computer Vision. 85, 182–191 (2009).
dc.relation.referencesen[22] Rodriguez P., Rojas R. A., Wohlberg B. Mixed gaussian-impulse noise image restoration via total variation. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1077–1080 (2012).
dc.relation.referencesen[23] Liu J., Tai X., Huang H., Huan Z. A Weighted Dictionary Learning Model for Denoising Images Corrupted by Mixed Noise. IEEE Transactions on Image Processing. 22 (3), 1108–1120 (2012).
dc.relation.referencesen[24] Stout Q. F. Supporting divide and conquer algorithm in image processing. J. of Parallel and Distributed Computing. 4 (1), 95–115 (1987).
dc.relation.referencesen[25] Bacquey N. Packing problem: A divide and conquer algorithm on cellular automata. Automata and JAC. 1–10 (2012).
dc.relation.referencesen26] Zhuang P., Fu X., Huang Y., Ding X. Image enhancement using divide and conquer strategy. Journal of Visual Communication and Image Representation. 45, 137–146 (2017).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectреакція-дифузія
dc.subjectобробка зображення
dc.subjectзмішаний гаусово-імпульсний шум
dc.subjectтехніка “розділяй і володарюй”
dc.subjectreaction-diffusion
dc.subjectimage processing
dc.subjectmixed Gaussian-impulse noise
dc.subjectdivide and conquer technique
dc.titleImage restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide & conquer technique
dc.title.alternativeВідновлення зображення та покращення контрастності на основі нелінійної реакційно-дифузійної математичної моделі та техніки “розділяй і володарюй”
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n3_Alaa_K-Image_restoration_and_contrast_549-559.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n3_Alaa_K-Image_restoration_and_contrast_549-559__COVER.png
Size:
422.45 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: