The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts
dc.citation.epage | 13 | |
dc.citation.issue | 1 | |
dc.citation.spage | 7 | |
dc.contributor.affiliation | Volodymyr Dahl East Ukrainian National University | |
dc.contributor.author | Korchuganova, Olena | |
dc.contributor.author | Tantsiura, Emiliia | |
dc.contributor.author | Ozheredova, Marina | |
dc.contributor.author | Afonina, Iryna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-12-23T13:23:56Z | |
dc.date.available | 2020-12-23T13:23:56Z | |
dc.date.created | 2020-01-24 | |
dc.date.issued | 2020-01-24 | |
dc.description.abstract | Отримано та досліджено зразки безнатрійового нікель гідроксикарбонату для нанорозмірних каталізаторів. Розраховано співвідношення кристалічної води, кількості гідроксиду нікелю та карбонату. Рентгенофазовим аналізом отриманого нікель оксиду визначено розмір кристаліту 12–13 нм. Зразки алюмо-нікелевих каталізаторів, одержаних з безнатрійового нікель гідроксикарбонату, забезпечують вищу на 30 % питому поверхню у порівнянні з промисловими каталізаторами. | |
dc.description.abstract | The samples of non-sodium nickel hydroxycarbonate for nanosized catalysts have been obtained and investigated. The ratio of crystalline water, the amount of nickel hydroxide and carbonate has been calculated. By the X-ray analysis of obtained nickel oxide the crystallite size of 12–13 nm has been determined. The samples of catalysts provided a high specific surface. | |
dc.format.extent | 7-13 | |
dc.format.pages | 7 | |
dc.identifier.citation | The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts / Olena Korchuganova, Emiliia Tantsiura, Marina Ozheredova, Iryna Afonina // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 7–13. | |
dc.identifier.citationen | The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts / Olena Korchuganova, Emiliia Tantsiura, Marina Ozheredova, Iryna Afonina // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 7–13. | |
dc.identifier.doi | doi.org/10.23939/chcht14.01.007 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55769 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (14), 2020 | |
dc.relation.references | [1] Lan R., Tao S.: J. Power Sour., 2011, 196, 5021. https://doi.org/10.1016/j.jpowsour.2011.02.015 | |
dc.relation.references | [2] Nail B., Fields J., Zhao J. et al.: ACS Nano, 2015, 9, 5135. https://doi.org/10.1021/acsnano.5b00435 | |
dc.relation.references | [3] Hu L., Qu B., Chen L., Li Q.: Mater. Lett., 2013, 108, 92. https://doi.org/10.1016/j.matlet.2013.06.060 | |
dc.relation.references | [4] Aslam S., Subhan F., Yan Z. et al.: Chem. Eng. J., 2017, 315, 469. https://doi.org/10.1016/j.cej.2017.01.047 | |
dc.relation.references | [5] Zhu G., Xi C., Shen M. et al.: ACS Appl. Mater. Interface., 2014, 6, 17208. https://doi.org/10.1021/am505056d | |
dc.relation.references | [6] Koo K., Park M., Jung U. et al.: Int. J. Hydrogen Energ., 2014, 39, 10941. https://doi.org/10.1016/j.ijhydene.2014.05.041 | |
dc.relation.references | [7] Ribeiro N., Neto R., Moya S. et al.: Int. J. Hydrogen Energ., 2010, 35, 11725. https://doi.org/10.1016/j.ijhydene.2010.08.024 | |
dc.relation.references | [8] Ertl G., Knözinger H., Weitkamp J.: Handbook of Heterogeneous Catalysis. VCH VerlagsgesellschaftmbH, Weinheim 1997. | |
dc.relation.references | [9] Cui X., Yuan H., Junge K. et al.: Green Chem., 2017, 19, 305. https://doi.org/10.1039/C6GC01955B | |
dc.relation.references | [10] Rhamdhani M., Jak E., Hayes P.: Metallurg. Mater. Transact. B, 2008, 39, 218. https://doi.org/10.1007/s11663-007-9124-4 | |
dc.relation.references | [11] Guillard D., Lewis A.: Ind. Eng. Chem. Res., 2001, 40, 5564. https://doi.org/10.1021/ie010312q | |
dc.relation.references | [12] Taibi M., Ammar S., Jouini N., Fiévet F.: J. Phys. Chem. Solids, 2006, 67, 932. https://doi.org/10.1016/j.jpcs.2006.01.006 | |
dc.relation.references | [13] Ballesteros F., Salcedo A., Vilando A. et al.: Chemosphere, 2016, 164, 59. https://doi.org/10.1016/j.chemosphere.2016.08.081 | |
dc.relation.references | [14] Packter A., Uppaladinni S.: Kristall Und Techn., 1975, 10, 985. https://doi.org/10.1002/crat.19750100910 | |
dc.relation.references | [15] Beskov V., Dobrydnev S., Zamuruev O., Kapaev G.: Izv. Vysshykh Ucheb. Zaved., 2009, 52, 25. | |
dc.relation.references | [16] Kong L.-B., Deng L., Li X.-M. et al.: Mater. Res. Bull., 2012, 47, 1641. https://doi.org/10.1016/j.materresbull.2012.03.051 | |
dc.relation.references | [17] Solovov V., Nykolenko N., Kovalenko V. et al.:Visnyk Nats. Techn. Univ. Khrakiv. Polytech. Inst., 2017, 7, 199. https://doi.org/10.20998/2413-4295.2017.07.28 | |
dc.relation.references | [18] Liu C., Li Y.: J. Alloy. Compd., 2009, 478, 415. https://doi.org/10.1016/j.jallcom.2008.11.049 | |
dc.relation.referencesen | [1] Lan R., Tao S., J. Power Sour., 2011, 196, 5021. https://doi.org/10.1016/j.jpowsour.2011.02.015 | |
dc.relation.referencesen | [2] Nail B., Fields J., Zhao J. et al., ACS Nano, 2015, 9, 5135. https://doi.org/10.1021/acsnano.5b00435 | |
dc.relation.referencesen | [3] Hu L., Qu B., Chen L., Li Q., Mater. Lett., 2013, 108, 92. https://doi.org/10.1016/j.matlet.2013.06.060 | |
dc.relation.referencesen | [4] Aslam S., Subhan F., Yan Z. et al., Chem. Eng. J., 2017, 315, 469. https://doi.org/10.1016/j.cej.2017.01.047 | |
dc.relation.referencesen | [5] Zhu G., Xi C., Shen M. et al., ACS Appl. Mater. Interface., 2014, 6, 17208. https://doi.org/10.1021/am505056d | |
dc.relation.referencesen | [6] Koo K., Park M., Jung U. et al., Int. J. Hydrogen Energ., 2014, 39, 10941. https://doi.org/10.1016/j.ijhydene.2014.05.041 | |
dc.relation.referencesen | [7] Ribeiro N., Neto R., Moya S. et al., Int. J. Hydrogen Energ., 2010, 35, 11725. https://doi.org/10.1016/j.ijhydene.2010.08.024 | |
dc.relation.referencesen | [8] Ertl G., Knözinger H., Weitkamp J., Handbook of Heterogeneous Catalysis. VCH VerlagsgesellschaftmbH, Weinheim 1997. | |
dc.relation.referencesen | [9] Cui X., Yuan H., Junge K. et al., Green Chem., 2017, 19, 305. https://doi.org/10.1039/P.6GC01955B | |
dc.relation.referencesen | [10] Rhamdhani M., Jak E., Hayes P., Metallurg. Mater. Transact. B, 2008, 39, 218. https://doi.org/10.1007/s11663-007-9124-4 | |
dc.relation.referencesen | [11] Guillard D., Lewis A., Ind. Eng. Chem. Res., 2001, 40, 5564. https://doi.org/10.1021/ie010312q | |
dc.relation.referencesen | [12] Taibi M., Ammar S., Jouini N., Fiévet F., J. Phys. Chem. Solids, 2006, 67, 932. https://doi.org/10.1016/j.jpcs.2006.01.006 | |
dc.relation.referencesen | [13] Ballesteros F., Salcedo A., Vilando A. et al., Chemosphere, 2016, 164, 59. https://doi.org/10.1016/j.chemosphere.2016.08.081 | |
dc.relation.referencesen | [14] Packter A., Uppaladinni S., Kristall Und Techn., 1975, 10, 985. https://doi.org/10.1002/crat.19750100910 | |
dc.relation.referencesen | [15] Beskov V., Dobrydnev S., Zamuruev O., Kapaev G., Izv. Vysshykh Ucheb. Zaved., 2009, 52, 25. | |
dc.relation.referencesen | [16] Kong L.-B., Deng L., Li X.-M. et al., Mater. Res. Bull., 2012, 47, 1641. https://doi.org/10.1016/j.materresbull.2012.03.051 | |
dc.relation.referencesen | [17] Solovov V., Nykolenko N., Kovalenko V. et al.:Visnyk Nats. Techn. Univ. Khrakiv. Polytech. Inst., 2017, 7, 199. https://doi.org/10.20998/2413-4295.2017.07.28 | |
dc.relation.referencesen | [18] Liu C., Li Y., J. Alloy. Compd., 2009, 478, 415. https://doi.org/10.1016/j.jallcom.2008.11.049 | |
dc.relation.uri | https://doi.org/10.1016/j.jpowsour.2011.02.015 | |
dc.relation.uri | https://doi.org/10.1021/acsnano.5b00435 | |
dc.relation.uri | https://doi.org/10.1016/j.matlet.2013.06.060 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2017.01.047 | |
dc.relation.uri | https://doi.org/10.1021/am505056d | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2014.05.041 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2010.08.024 | |
dc.relation.uri | https://doi.org/10.1039/C6GC01955B | |
dc.relation.uri | https://doi.org/10.1007/s11663-007-9124-4 | |
dc.relation.uri | https://doi.org/10.1021/ie010312q | |
dc.relation.uri | https://doi.org/10.1016/j.jpcs.2006.01.006 | |
dc.relation.uri | https://doi.org/10.1016/j.chemosphere.2016.08.081 | |
dc.relation.uri | https://doi.org/10.1002/crat.19750100910 | |
dc.relation.uri | https://doi.org/10.1016/j.materresbull.2012.03.051 | |
dc.relation.uri | https://doi.org/10.20998/2413-4295.2017.07.28 | |
dc.relation.uri | https://doi.org/10.1016/j.jallcom.2008.11.049 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Korchuganova O., Tantsiura E., Ozheredova M., Afonina I., 2020 | |
dc.subject | нікель гідроксікарбонат | |
dc.subject | осадження | |
dc.subject | осаджувач | |
dc.subject | нікель оксид | |
dc.subject | каталізатори | |
dc.subject | nickel hydroxycarbonate | |
dc.subject | precipitation | |
dc.subject | precipitant | |
dc.subject | nickel oxide | |
dc.subject | catalysts | |
dc.title | The Non-Sodium Nickel Hydroxycarbonate for Nanosized Catalysts | |
dc.title.alternative | Безнатрійовий нікель гідроксокарбонат для нанорозмірних каталізаторів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1