On the radial solutions of a p-Laplace equation with the Hardy potential
dc.citation.epage | 1099 | |
dc.citation.issue | 4 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 1093 | |
dc.contributor.affiliation | Університет Абдельмалека Ессааді | |
dc.contributor.affiliation | Abdelmalek Essaadi University | |
dc.contributor.author | Бахадда, М. | |
dc.contributor.author | Бузельмат, А. | |
dc.contributor.author | Bakhadda, M. | |
dc.contributor.author | Bouzelmate, A. | |
dc.coverage.placename | Львів | |
dc.date.accessioned | 2025-03-10T09:22:04Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У цій статті досліджується асимптотична поведінка радіальних розв’язків такого квазілінійного рівняння з потенціалом Харді ∆pu + h(|x|)|u| p−2u = 0, x ∈ RN − {0}, де 2 < p < N, h — радіальна функція на RN − {0} так, що h(|x|) = γ|x|−p, γ > 0 i ∆pu = Δpu=div(|∇u|p−2∇u) є p-оператором Лапласа. Дослідження сильно залежить від знака γ−(σ/p∗)p де σ=(N−p)/(p−1) і p∗=p/(p−1). | |
dc.description.abstract | In this paper, we study the asymptotic behavior of radial solutions of the following quasilinear equation with the Hardy potential ∆pu + h(|x|)|u| p−2u = 0, x ∈ R N − {0}, where 2 < p < N, h is a radial function on RN − {0} such that h(|x|) = γ|x|−p, γ > 0 and Δpu=div(|∇u|p−2∇u) is the p-Laplacian operator. The study strongly depends on the sign of γ−(σ/p∗)p where σ=(N−p)/(p−1) and p∗=p/(p−1). | |
dc.format.extent | 1093-1099 | |
dc.format.pages | 7 | |
dc.identifier.citation | Bakhadda M. On the radial solutions of a p-Laplace equation with the Hardy potential / M. Bakhadda, A. Bouzelmate // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1093–1099. | |
dc.identifier.citationen | Bakhadda M. On the radial solutions of a p-Laplace equation with the Hardy potential / M. Bakhadda, A. Bouzelmate // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1093–1099. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.04.1093 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64090 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 4 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 4 (10), 2023 | |
dc.relation.references | [1] Bouzelmate A., Gmira A. Existence and asymptotic behavior of unbounded positive solutions of a nonlinear degenerate elliptic equation. Nonlinear Dynamics and Systems Theory. 21 (1), 27–55 (2021). | |
dc.relation.references | [2] Franca M. Radial ground states and singular ground states for a spatial-dependent p-Laplace equation. Journal of Differential Equations. 248 (11), 2629–2656 (2010). | |
dc.relation.references | [3] Itakura K., Onitsuka M., Tanaka S. Perturbations of planar quasilinear differential systems. Journal of Differential Equations. 271, 216–253 (2021). | |
dc.relation.references | [4] Itakura K., Tanaka S. A note on the asymptotic behavior of radial solutions to quasilinear elliptic equations with a Hardy potential. Proceedings of the American Mathematical Society, Series B. 8, 302–310 (2021). | |
dc.relation.references | [5] Onitsuka M., Tanaka S. Characteristic equation for autonomous planar half-linear differential systems. Acta Mathematica Hungarica. 152, 336–364 (2017). | |
dc.relation.references | [6] Sugie J., Onitsuka M., Yamaguchi A. Asymptotic behavior of solutions of nonautonomous half-linear differential systems. Studia Scientiarum Mathematicarum Hungarica. 44 (2), 159–189 (2007). | |
dc.relation.references | [7] Xiang C.-L. Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential. Journal of Differential Equations. 259 (8), 3929–3954 (2015). | |
dc.relation.references | [8] Sfecci A. On the structure of radial solutions for some quasilinear elliptic equations. Journal of Mathematical Analysis and Applications. 470 (1), 515–531 (2019). | |
dc.relation.references | [9] Bidaut-V´eron M. F. The p-Laplacien heat equation with a source term: self-similar solutions revisited. Advanced Nonlinear Studies. 6 (1), 69–108 (2006). | |
dc.relation.references | [10] Abdellaoui B., Felli V., Peral I. Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian. Bollettino dell’Unione Matematica Italiana. 9-B (2), 445–484 (2006). | |
dc.relation.references | [11] Hirsch M. W., Smal S., Devaney R. L. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier/Academic Press, Amsterdam (2013). | |
dc.relation.referencesen | [1] Bouzelmate A., Gmira A. Existence and asymptotic behavior of unbounded positive solutions of a nonlinear degenerate elliptic equation. Nonlinear Dynamics and Systems Theory. 21 (1), 27–55 (2021). | |
dc.relation.referencesen | [2] Franca M. Radial ground states and singular ground states for a spatial-dependent p-Laplace equation. Journal of Differential Equations. 248 (11), 2629–2656 (2010). | |
dc.relation.referencesen | [3] Itakura K., Onitsuka M., Tanaka S. Perturbations of planar quasilinear differential systems. Journal of Differential Equations. 271, 216–253 (2021). | |
dc.relation.referencesen | [4] Itakura K., Tanaka S. A note on the asymptotic behavior of radial solutions to quasilinear elliptic equations with a Hardy potential. Proceedings of the American Mathematical Society, Series B. 8, 302–310 (2021). | |
dc.relation.referencesen | [5] Onitsuka M., Tanaka S. Characteristic equation for autonomous planar half-linear differential systems. Acta Mathematica Hungarica. 152, 336–364 (2017). | |
dc.relation.referencesen | [6] Sugie J., Onitsuka M., Yamaguchi A. Asymptotic behavior of solutions of nonautonomous half-linear differential systems. Studia Scientiarum Mathematicarum Hungarica. 44 (2), 159–189 (2007). | |
dc.relation.referencesen | [7] Xiang C.-L. Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential. Journal of Differential Equations. 259 (8), 3929–3954 (2015). | |
dc.relation.referencesen | [8] Sfecci A. On the structure of radial solutions for some quasilinear elliptic equations. Journal of Mathematical Analysis and Applications. 470 (1), 515–531 (2019). | |
dc.relation.referencesen | [9] Bidaut-V´eron M. F. The p-Laplacien heat equation with a source term: self-similar solutions revisited. Advanced Nonlinear Studies. 6 (1), 69–108 (2006). | |
dc.relation.referencesen | [10] Abdellaoui B., Felli V., Peral I. Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian. Bollettino dell’Unione Matematica Italiana. 9-B (2), 445–484 (2006). | |
dc.relation.referencesen | [11] Hirsch M. W., Smal S., Devaney R. L. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier/Academic Press, Amsterdam (2013). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | квазілінійне рівняння | |
dc.subject | p-оператор Лапласа | |
dc.subject | потенціал Харді | |
dc.subject | радіальні розв’язки | |
dc.subject | динамічна система | |
dc.subject | характеристичне рівняння | |
dc.subject | асимптотика | |
dc.subject | quasi-linear equation | |
dc.subject | p-Laplacian | |
dc.subject | Hardy potential | |
dc.subject | radial solutions | |
dc.subject | dynamical system | |
dc.subject | characteristic equation | |
dc.subject | asymptotic behavior | |
dc.title | On the radial solutions of a p-Laplace equation with the Hardy potential | |
dc.title.alternative | Про радіальні розв’язки рівняння p-Лапласа з потенціалом Харді | |
dc.type | Article |
Files
License bundle
1 - 1 of 1