On the radial solutions of a p-Laplace equation with the Hardy potential

dc.citation.epage1099
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage1093
dc.contributor.affiliationУніверситет Абдельмалека Ессааді
dc.contributor.affiliationAbdelmalek Essaadi University
dc.contributor.authorБахадда, М.
dc.contributor.authorБузельмат, А.
dc.contributor.authorBakhadda, M.
dc.contributor.authorBouzelmate, A.
dc.coverage.placenameЛьвів
dc.date.accessioned2025-03-10T09:22:04Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій статті досліджується асимптотична поведінка радіальних розв’язків такого квазілінійного рівняння з потенціалом Харді ∆pu + h(|x|)|u| p−2u = 0, x ∈ RN − {0}, де 2 < p < N, h — радіальна функція на RN − {0} так, що h(|x|) = γ|x|−p, γ > 0 i ∆pu = Δpu=div(|∇u|p−2∇u) є p-оператором Лапласа. Дослідження сильно залежить від знака γ−(σ/p∗)p де σ=(N−p)/(p−1) і p∗=p/(p−1).
dc.description.abstractIn this paper, we study the asymptotic behavior of radial solutions of the following quasilinear equation with the Hardy potential ∆pu + h(|x|)|u| p−2u = 0, x ∈ R N − {0}, where 2 < p < N, h is a radial function on RN − {0} such that h(|x|) = γ|x|−p, γ > 0 and Δpu=div(|∇u|p−2∇u) is the p-Laplacian operator. The study strongly depends on the sign of γ−(σ/p∗)p where σ=(N−p)/(p−1) and p∗=p/(p−1).
dc.format.extent1093-1099
dc.format.pages7
dc.identifier.citationBakhadda M. On the radial solutions of a p-Laplace equation with the Hardy potential / M. Bakhadda, A. Bouzelmate // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1093–1099.
dc.identifier.citationenBakhadda M. On the radial solutions of a p-Laplace equation with the Hardy potential / M. Bakhadda, A. Bouzelmate // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1093–1099.
dc.identifier.doidoi.org/10.23939/mmc2023.04.1093
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64090
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 4 (10), 2023
dc.relation.references[1] Bouzelmate A., Gmira A. Existence and asymptotic behavior of unbounded positive solutions of a nonlinear degenerate elliptic equation. Nonlinear Dynamics and Systems Theory. 21 (1), 27–55 (2021).
dc.relation.references[2] Franca M. Radial ground states and singular ground states for a spatial-dependent p-Laplace equation. Journal of Differential Equations. 248 (11), 2629–2656 (2010).
dc.relation.references[3] Itakura K., Onitsuka M., Tanaka S. Perturbations of planar quasilinear differential systems. Journal of Differential Equations. 271, 216–253 (2021).
dc.relation.references[4] Itakura K., Tanaka S. A note on the asymptotic behavior of radial solutions to quasilinear elliptic equations with a Hardy potential. Proceedings of the American Mathematical Society, Series B. 8, 302–310 (2021).
dc.relation.references[5] Onitsuka M., Tanaka S. Characteristic equation for autonomous planar half-linear differential systems. Acta Mathematica Hungarica. 152, 336–364 (2017).
dc.relation.references[6] Sugie J., Onitsuka M., Yamaguchi A. Asymptotic behavior of solutions of nonautonomous half-linear differential systems. Studia Scientiarum Mathematicarum Hungarica. 44 (2), 159–189 (2007).
dc.relation.references[7] Xiang C.-L. Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential. Journal of Differential Equations. 259 (8), 3929–3954 (2015).
dc.relation.references[8] Sfecci A. On the structure of radial solutions for some quasilinear elliptic equations. Journal of Mathematical Analysis and Applications. 470 (1), 515–531 (2019).
dc.relation.references[9] Bidaut-V´eron M. F. The p-Laplacien heat equation with a source term: self-similar solutions revisited. Advanced Nonlinear Studies. 6 (1), 69–108 (2006).
dc.relation.references[10] Abdellaoui B., Felli V., Peral I. Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian. Bollettino dell’Unione Matematica Italiana. 9-B (2), 445–484 (2006).
dc.relation.references[11] Hirsch M. W., Smal S., Devaney R. L. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier/Academic Press, Amsterdam (2013).
dc.relation.referencesen[1] Bouzelmate A., Gmira A. Existence and asymptotic behavior of unbounded positive solutions of a nonlinear degenerate elliptic equation. Nonlinear Dynamics and Systems Theory. 21 (1), 27–55 (2021).
dc.relation.referencesen[2] Franca M. Radial ground states and singular ground states for a spatial-dependent p-Laplace equation. Journal of Differential Equations. 248 (11), 2629–2656 (2010).
dc.relation.referencesen[3] Itakura K., Onitsuka M., Tanaka S. Perturbations of planar quasilinear differential systems. Journal of Differential Equations. 271, 216–253 (2021).
dc.relation.referencesen[4] Itakura K., Tanaka S. A note on the asymptotic behavior of radial solutions to quasilinear elliptic equations with a Hardy potential. Proceedings of the American Mathematical Society, Series B. 8, 302–310 (2021).
dc.relation.referencesen[5] Onitsuka M., Tanaka S. Characteristic equation for autonomous planar half-linear differential systems. Acta Mathematica Hungarica. 152, 336–364 (2017).
dc.relation.referencesen[6] Sugie J., Onitsuka M., Yamaguchi A. Asymptotic behavior of solutions of nonautonomous half-linear differential systems. Studia Scientiarum Mathematicarum Hungarica. 44 (2), 159–189 (2007).
dc.relation.referencesen[7] Xiang C.-L. Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential. Journal of Differential Equations. 259 (8), 3929–3954 (2015).
dc.relation.referencesen[8] Sfecci A. On the structure of radial solutions for some quasilinear elliptic equations. Journal of Mathematical Analysis and Applications. 470 (1), 515–531 (2019).
dc.relation.referencesen[9] Bidaut-V´eron M. F. The p-Laplacien heat equation with a source term: self-similar solutions revisited. Advanced Nonlinear Studies. 6 (1), 69–108 (2006).
dc.relation.referencesen[10] Abdellaoui B., Felli V., Peral I. Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian. Bollettino dell’Unione Matematica Italiana. 9-B (2), 445–484 (2006).
dc.relation.referencesen[11] Hirsch M. W., Smal S., Devaney R. L. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier/Academic Press, Amsterdam (2013).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectквазілінійне рівняння
dc.subjectp-оператор Лапласа
dc.subjectпотенціал Харді
dc.subjectрадіальні розв’язки
dc.subjectдинамічна система
dc.subjectхарактеристичне рівняння
dc.subjectасимптотика
dc.subjectquasi-linear equation
dc.subjectp-Laplacian
dc.subjectHardy potential
dc.subjectradial solutions
dc.subjectdynamical system
dc.subjectcharacteristic equation
dc.subjectasymptotic behavior
dc.titleOn the radial solutions of a p-Laplace equation with the Hardy potential
dc.title.alternativeПро радіальні розв’язки рівняння p-Лапласа з потенціалом Харді
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n4_Bakhadda_M-On_the_radial_solutions_1093-1099.pdf
Size:
1011.5 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n4_Bakhadda_M-On_the_radial_solutions_1093-1099__COVER.png
Size:
364.18 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: