The algorithms of constructing the continued fractions for any rations of the hypergeometric Gaussian functions

Abstract

Описано алгоритм побудови рекурентних спiввiдношень гiпергеометричних функцiй Гаусса, в яких змiщення параметрiв a, b, c дорiвнює 0, 1 або −1. На основi таких рекурентних спiввiдношень побудовано розвинення для вiдношення функцiй Гаусса у неперервнi дроби. Отриманi неперервнi дроби є розвиненням вiдповiдних гiпергео- метричних функцiй Гаусса, якщо параметри функцiї є цiлими числами.
An algorithm for constructing recurrence relations of geometric Gaussian functions, in which the displacement of parameters is equal to 0, 1 or −1, is described. On the basis of such recurrence relations, the expansion for the ratio of Gaussian functions into continued fractions is developed. The obtained continued fractions are the development of the corresponding hypergeometric Gaussian functions in the case when the parameters of the function are integers.

Description

Keywords

гіпергеометричний ряд Гаусса, гіпергеометрична функція, неперервний дріб, рекурентне відношення, розвинення, відношення, алгоритм, наближення, Gaussian hypergeometric series, hypergeometric function, continued fraction, recurrence relation, expansion, ratio, algorithm, approximant

Citation

Manziy O. The algorithms of constructing the continued fractions for any rations of the hypergeometric Gaussian functions / O. Manziy, V. Hladun, L. Ventyk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 4. — No 1. — P. 48–58.

Endorsement

Review

Supplemented By

Referenced By