The valuation of knock-out power calls under Black–Scholes framework

dc.citation.epage64
dc.citation.issue1
dc.citation.spage57
dc.contributor.affiliationУніверситет Путра Малайзія
dc.contributor.affiliationUniversiti Putra Malaysia
dc.contributor.authorСавал, А. С.
dc.contributor.authorІбрагім, С. Н.
dc.contributor.authorЛагам, М. Ф.
dc.contributor.authorSawal, A. S.
dc.contributor.authorIbrahim, S. N. I.
dc.contributor.authorLaham, M. F.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-12-13T09:11:10Z
dc.date.available2023-12-13T09:11:10Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractСтепеневі кол опціони-нокаут — це опціони, які включають бар’єри для оцінки опціонів. Введення бар’єрів для опціонів зменшує витрати на утримання опціонів, які, як відомо, мають більший важіль, ніж стандартні ванільні опціони. У цій статті оцінюються степеневі кол опціони-нокаут за допомогою моделювання Кранка–Ніколсона та Монте–Карло в описі Блека–Шоулза. Результати показують, що моделювання Кранка–Ніколсона є більш точним і ефективним, ніж моделювання Монте–Карло, для визначення ціни на степеневі кол опціони-нокаут.
dc.description.abstractKnock-out power calls are options that incorporate barriers to the valuation of power calls. Introducing barriers to power calls reduces the costs to hold power calls which are known to have higher leverage than the standard vanillas. In this paper, we model the valuation of knock-out power calls using Crank–Nicolson and Monte Carlo simulation under Black–Scholes environment. Results show that Crank–Nicolson is more accurate and more efficient than Monte Carlo simulation for pricing knock-out power calls.
dc.format.extent57-64
dc.format.pages8
dc.identifier.citationSawal A. S. The valuation of knock-out power calls under Black–Scholes framework / A. S. Sawal, S. N. I. Ibrahim, M. F. Laham // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 57–64.
dc.identifier.citationenSawal A. S. The valuation of knock-out power calls under Black–Scholes framework / A. S. Sawal, S. N. I. Ibrahim, M. F. Laham // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 1. — P. 57–64.
dc.identifier.doi10.23939/mmc2022.01.057
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60555
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (9), 2022
dc.relation.references[1] Heynen R. C., Kat H. M. Pricing and hedging power options. Financial Engineering and the Japanese Markets. 3, 253–261 (1996).
dc.relation.references[2] Black F., Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy. 81 (3), 637–654 (1973).
dc.relation.references[3] Ibrahim S. N. I., O’Hara J. G., Constantinou N. Power option pricing via fast Fourier transform. 2012 4th Computer Science and Electronic Engineering Conference (CEEC). 1–6 (2012).
dc.relation.references[4] Esser A. General valuation principles for arbitrary payoffs and applications to power options under stochastic volatility. Financial Markets and Portfolio Management. 17, 351–372 (2003).
dc.relation.references[5] Ibrahim S. N. I., O’Hara J. G., Constantinou N. Risk-neutral valuation of power barrier options. Applied Mathematics Letters. 26 (6), 595–600 (2013).
dc.relation.references[6] Blenman L. P., Clark S. P. Power exchange options. Finance Research Letters. 2 (2), 97–106 (2005).
dc.relation.references[7] Chen A., Suchanecki M. Parisian exchange options. Quantitative Finance. 11 (8), 1207–1220 (2011).
dc.relation.references[8] Carr P. The valuation of sequential exchange opportunities. The Journal of Finance. 43, 1235–1256 (1988).
dc.relation.references[9] Westermark N. Barrier Option Pricing. Degree Project in Mathematics, First Level. 1–38 (2009).
dc.relation.references[10] Tompkins R., Hubalek F. On closed form solutions for pricing options with jumping volatility. Unpublished paper: Technical University, Vienna (2000).
dc.relation.references[11] Lee W. T. Tridiagonal matrices: Thomas algorithm (2011).
dc.relation.references[12] Boyle P. P. Options: A Monte Carlo approach. Journal of Financial Economics. 4 (3), 323–338 (1977).
dc.relation.references[13] Ibrahim S. N., O’Hara J. G., Constantinou N. Pricing extendible options using the fast Fourier transform. Mathematical Problems in Engineering. 2014, Article ID 831470 (2014).
dc.relation.references[14] Ibrahim S. N., Diaz-Hernandez A., O’Hara J. G., Constantinou N. Pricing holder-extendable call options with mean-reverting stochastic volatility. The ANZIAM Journal. 61 (4), 382–397 (2019).
dc.relation.referencesen[1] Heynen R. C., Kat H. M. Pricing and hedging power options. Financial Engineering and the Japanese Markets. 3, 253–261 (1996).
dc.relation.referencesen[2] Black F., Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy. 81 (3), 637–654 (1973).
dc.relation.referencesen[3] Ibrahim S. N. I., O’Hara J. G., Constantinou N. Power option pricing via fast Fourier transform. 2012 4th Computer Science and Electronic Engineering Conference (CEEC). 1–6 (2012).
dc.relation.referencesen[4] Esser A. General valuation principles for arbitrary payoffs and applications to power options under stochastic volatility. Financial Markets and Portfolio Management. 17, 351–372 (2003).
dc.relation.referencesen[5] Ibrahim S. N. I., O’Hara J. G., Constantinou N. Risk-neutral valuation of power barrier options. Applied Mathematics Letters. 26 (6), 595–600 (2013).
dc.relation.referencesen[6] Blenman L. P., Clark S. P. Power exchange options. Finance Research Letters. 2 (2), 97–106 (2005).
dc.relation.referencesen[7] Chen A., Suchanecki M. Parisian exchange options. Quantitative Finance. 11 (8), 1207–1220 (2011).
dc.relation.referencesen[8] Carr P. The valuation of sequential exchange opportunities. The Journal of Finance. 43, 1235–1256 (1988).
dc.relation.referencesen[9] Westermark N. Barrier Option Pricing. Degree Project in Mathematics, First Level. 1–38 (2009).
dc.relation.referencesen[10] Tompkins R., Hubalek F. On closed form solutions for pricing options with jumping volatility. Unpublished paper: Technical University, Vienna (2000).
dc.relation.referencesen[11] Lee W. T. Tridiagonal matrices: Thomas algorithm (2011).
dc.relation.referencesen[12] Boyle P. P. Options: A Monte Carlo approach. Journal of Financial Economics. 4 (3), 323–338 (1977).
dc.relation.referencesen[13] Ibrahim S. N., O’Hara J. G., Constantinou N. Pricing extendible options using the fast Fourier transform. Mathematical Problems in Engineering. 2014, Article ID 831470 (2014).
dc.relation.referencesen[14] Ibrahim S. N., Diaz-Hernandez A., O’Hara J. G., Constantinou N. Pricing holder-extendable call options with mean-reverting stochastic volatility. The ANZIAM Journal. 61 (4), 382–397 (2019).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectстепеневі кол опціони
dc.subjectстепеневі кол опціони-нокаут
dc.subjectмоделювання Блека–Шоулза
dc.subjectКранка–Ніколсона
dc.subjectМонте–Карло
dc.subjectpower calls
dc.subjectknock-out power calls
dc.subjectBlack–Scholes
dc.subjectCrank–Nicolson
dc.subjectMonte Carlo simulation
dc.titleThe valuation of knock-out power calls under Black–Scholes framework
dc.title.alternativeОцінка степеневих кол опціонів-нокаут за описом Блека–Шоулза
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v9n1_Sawal_A_S-The_valuation_of_knock_out_57-64.pdf
Size:
966.27 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v9n1_Sawal_A_S-The_valuation_of_knock_out_57-64__COVER.png
Size:
406.49 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: