Development of a methodics for improving the accuracy of determination of spatial coordinates of object points during air surveillance from a UAV

dc.citation.epage54
dc.citation.issue92
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage45
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГлотов, В.
dc.contributor.authorФис, М.
dc.contributor.authorПащетник, О.
dc.contributor.authorHlotov, V.
dc.contributor.authorFys, M.
dc.contributor.authorPashchetnyk, O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-03-02T08:27:59Z
dc.date.available2023-03-02T08:27:59Z
dc.date.created2020-03-12
dc.date.issued2020-03-12
dc.description.abstractМета. Розробити оптимальний алгоритм, завдяки якому вдасться підвищити точність визначення координат місцевості при застосуванні аерознімального процесу з допомогою безпілотного літального апарату (БПЛА). Методика. Виконується мінімізація функції побудованої на підставі умови колінеарності, що дає уточнення елементів зовнішнього орієнтування (ЕЗО) цифрових зображень, а це у свою чергу приводить до підвищення точності просторових координат точок об’єктів. Причому, запропонована функція – це сума квадратів різниць між вирахуваними та даними спостережень опорних точок на відповідних цифрових зображеннях. Послідовність реалізації запропонованого алгоритму полягає в тому, що урахування умови мінімуму цієї функції дає можливість отримати систему шести нелінійних рівнянь стосовно ЕЗО. Процес визначення ЕЗО виконується двома способами: в першому випадку функцію G мінімізуємо безпосередньо одним з чисельних методів, а в другому – одержуємо як розв’язок системи рівнянь, що дає уточнені значення ЕЗО на підставі початкових наближень, отриманих безпосередньо з телеметрії БПЛА. Для контролю точності визначення ЕЗО застосовуються видозмінені умови мінімуму функції G в яких відсутні операції диференціювання. В результаті, отримаємо остаточні значення ЕЗО в момент знімання. Результати. Розроблений і апробований на макетних на реальних прикладах алгоритм, який дозволяє підвищити точність обчислення координат точок місцевості при застосуванні БПЛА для аерознімального процесу. Наукова новизна. Отримані формули, за допомогою яких підвищується точність створення топографічних матеріалів цифровим стереофотограмметричним методом. Практична значущість. Впровадження розробленого алгоритму дасть змогу суттєво підвищити точність опрацювання великомасштабних ортофотопланів та топографічних планів створених за матеріалами аерознімання з БПЛА.
dc.description.abstractPurpose. The purpose of the paper is to develop an optimal algorithm that will increase the accuracy of determining the coordinates of the terrain when applying the aerial process using an unmanned aerial vehicle (UAV). Method. The study performs the minimization of function based on the condition of collinearity. It clarifies the elements of external orientation (EZO) of digital images and leads to an increase in the accuracy of the spatial coordinates of the points of objects. The proposed function is the sum of the squares of the differences between the calculated and measured reference points on the corresponding digital images. The sequence of implementation of the proposed algorithm includes taking into account the condition of the minimum of this function, which allows obtaining a system of six nonlinear equations for EZO. The process of determining EZO is performed in two ways: in the first case, the function G is minimized directly by one of the numerical methods, and in the second – obtained as a solution of a system of equations, which gives refined EZO values based on initial approximations obtained directly from UAV telemetry. Modified conditions of the minimum of the function G, in which there are no differentiation operations, are used to control the accuracy of EZO determination. As a result, we obtain the final values of the EZO at the time of shooting. Results. An algorithm has been developed and tested on mock-ups on real examples, which allows to increase the accuracy of calculating the coordinates of terrain points when using UAVs for the aerial photography process. Scientific novelty. The research obtained the formulas, which increase the accuracy of creating topographic materials by digital stereophotogrammetric method. Practical significance. The implementation of the developed algorithm will significantly increase the accuracy of processing large-scale orthophotos and topographic plans created on the basis of aerial photography from UAVs.
dc.format.extent45-54
dc.format.pages10
dc.identifier.citationHlotov V. Development of a methodics for improving the accuracy of determination of spatial coordinates of object points during air surveillance from a UAV / V. Hlotov, M. Fys, O. Pashchetnyk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2020. — No 92. — P. 45–54.
dc.identifier.citationenHlotov V. Development of a methodics for improving the accuracy of determination of spatial coordinates of object points during air surveillance from a UAV / V. Hlotov, M. Fys, O. Pashchetnyk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2020. — No 92. — P. 45–54.
dc.identifier.doidoi.org/10.23939/istcgcap2020.92.045
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57456
dc.language.isoen
dc.publisherВидавництво Національного університету “Львівська політехніка”
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 92, 2020
dc.relation.ispartofGeodesy, cartography and aerial photography, 92, 2020
dc.relation.referencesBabinec, A. & Apeltauer, J. (2016). On accuracy of
dc.relation.referencesposition estimation from aerial imagery captured by lowflying UAVs. International Journal of Transportation
dc.relation.referencesScience and Technology, 5(3), 152‒166.
dc.relation.referenceshttps://doi.org/10.1016/j.ijtst.2017.02.002. (in English).
dc.relation.referencesBerezina, S., Logachov, S. & Solonets, O. (2018).
dc.relation.referencesMethod of coordinate referencing of the images received
dc.relation.referencesfrom UAV, by elements of external orientation Systemy
dc.relation.referencesozbroyennya i viysʹkova tekhnika, 1(53), 76–83. doi: 10.30748/soivt.2018.53.11. (in Ukrainian).
dc.relation.referencesBezmenov, V. M. (2014). The use of quaternions
dc.relation.referencesin photogrammetry. Proceedings of the Higher
dc.relation.referencesEducational Institutions. Izvestia vuzov. Geodesy
dc.relation.referencesand aerophotosurveying, (5), 22–27. (in Russian)
dc.relation.referencesBezmenov, V. M., & Safin, K. I. (2019). Photogrammetric
dc.relation.referencesintersection. Accuracy estimation for an arbitrary
dc.relation.referencescase of aerial survey. Proceedings of the Higher
dc.relation.referencesEducational Institutions. Izvestia vuzov. Geodesy
dc.relation.referencesand aerophotosurveying, 63(4), 400–406. doi: 10.30533/0536- 101X-2019-63-4-400-406. (in Russian)
dc.relation.referencesBezmenov, V. M. & Safin, K. I. (2019). The accuracy
dc.relation.referencesestimation of photogrammetric spatial intersection
dc.relation.referencesfor random shooting case. The general approach to
dc.relation.referencessolving the problem. Sovremennyye problemy
dc.relation.referencesdistantsionnogo zondirovaniya Zemli iz kosmosa, 16(6), 283–289. (in Russian).
dc.relation.referencesBosak K. (2012). Secrets of UAV photomapping
dc.relation.referencesby Krzysztof Bozak. 66p. URL:
dc.relation.referenceshttp://s3.amazonaws.com/DroneMapper_US/documentation/pteryx-mapping-secrets.pdf.
dc.relation.referencesChernyshev, M. & Kucenko, V. (2018). Assessment of
dc.relation.referencesaccuracy of definition of position of the UAV by a
dc.relation.referencesdifference-ranging method in the moving system of
dc.relation.referencesa passive radar-location in air defense complexes
dc.relation.referencesground forces of small range. Systemy
dc.relation.referencesozbroyennya i viysʹkova tekhnika, 2(54), 61–66.
dc.relation.referencesdoi:10.30748/soivt.2018.54.08. (in Ukrainian).
dc.relation.referencesDorozhynsʹkyy, O. Tukay, R. (2008). Photogrammetry.
dc.relation.references−Lʹviv: Vydavnytstvo Natsionalʹnoho universytetu
dc.relation.references“Lʹvivsʹka politekhnika”, 332 p.
dc.relation.referencesKim, H., Ryu, C., Kim, Z. & Zhen C. (2017). Study of
dc.relation.referencesthe possibility of using quaternions to determine the
dc.relation.referencesparameters of exterior orientation in photogrammetry.
dc.relation.referencesNauchnyye issledovaniya, 5(16), 85–89. (in Russian).
dc.relation.referencesKorshunov, R. A., Noskov, V. V. & Pogorelov, V. V. (2013). Off-center photogrammetric inverse serif .
dc.relation.referencesIzvestiya vysshikh uchebnykh zavedeniy. Geodeziya i
dc.relation.referencesaerofotos"yemka, (5), 67–71. (in Russian).
dc.relation.referencesMazaheri, M. & Habib, A. (2015). Quaternion-Based
dc.relation.referencesSolutions for the Single Photo Resection Problem.
dc.relation.referencesPhotogrammetric Engineering & Remote Sensing, 81(3), 209–217. (in English).
dc.relation.referencesMihaylov, A. P. (2012). Again about the choice of digital
dc.relation.referencescameras to perform aerial survey with unmanned
dc.relation.referencesvehicles. In Proceedings of the 12th International
dc.relation.referencesScientific Conference “From image to map: digital
dc.relation.referencesphotogrammetric technologies”. (in Russian)
dc.relation.referencesSchkil, M. I. (2005). Mathematical analysis u 2-kh
dc.relation.referencestomakh Pidruchnyk u 2-kh ch., – 3-tye vydannya,
dc.relation.referencespererobl. i dopovn., K.: Vyshcha shk., 447 s. (in
dc.relation.referencesUkrainian).
dc.relation.referencesSchultz, R. V., Voytenko, S. P., Krelshteinn, P. D. &
dc.relation.referencesMalina, I. A. (2015). The issue of calculating points
dc.relation.referencespositioning accuracy for aerial photographs from
dc.relation.referencesunmanned aerial vehicles. Inzhenerna heodeziya, (62), 124-136. (in Ukrainian).
dc.relation.referencesSilva, А. M. & Silva, D. C. (2015). Resseção espacial em
dc.relation.referencesfotogrametria com quatérnios (The photogrammetric
dc.relation.referencesspatial resection using quaternion). Boletim de
dc.relation.referencesCiências Geodésicas, 21(4), 2015, 750‒764. (in
dc.relation.referencesSpanish).
dc.relation.referencesSimineev, A. A. & Tarasova, E. I. (2012). Photogrammetric
dc.relation.referencesresection: reliability of task solution. Vestnik SanktPeterburgskogo universiteta. Seriya 7: Geologiya.
dc.relation.referencesGeografiya, (4), 129–134. (in Russian).
dc.relation.referencesTsvetkov, V. Ja. (2011). Linear photogrammetry an
dc.relation.referencesintersection. Nauki o Zemle: mezhdunarodnyy nauchnotekhnicheskiy i proizvodstvennyy zhurnal, (2), 44–46. (in Russian).
dc.relation.referencesYanchuk, R. M. & Trokhymets, S. M. (2017). Creating
dc.relation.referencescartographic basis for developing master plans
dc.relation.referencesof settlements on materials of aerial surveys
dc.relation.referencesusing unspecialized inexpensive UAV. Visnyk
dc.relation.referencesNatsionalʹnoho universytetu vodnoho hospodarstva ta
dc.relation.referencespryrodokorystuvannya. Seriya «Tekhnichni nauky», 1 (77), 32‒39. (in Ukrainian).
dc.relation.referencesenBabinec, A. & Apeltauer, J. (2016). On accuracy of
dc.relation.referencesenposition estimation from aerial imagery captured by lowflying UAVs. International Journal of Transportation
dc.relation.referencesenScience and Technology, 5(3), 152‒166.
dc.relation.referencesenhttps://doi.org/10.1016/j.ijtst.2017.02.002. (in English).
dc.relation.referencesenBerezina, S., Logachov, S. & Solonets, O. (2018).
dc.relation.referencesenMethod of coordinate referencing of the images received
dc.relation.referencesenfrom UAV, by elements of external orientation Systemy
dc.relation.referencesenozbroyennya i viysʹkova tekhnika, 1(53), 76–83. doi: 10.30748/soivt.2018.53.11. (in Ukrainian).
dc.relation.referencesenBezmenov, V. M. (2014). The use of quaternions
dc.relation.referencesenin photogrammetry. Proceedings of the Higher
dc.relation.referencesenEducational Institutions. Izvestia vuzov. Geodesy
dc.relation.referencesenand aerophotosurveying, (5), 22–27. (in Russian)
dc.relation.referencesenBezmenov, V. M., & Safin, K. I. (2019). Photogrammetric
dc.relation.referencesenintersection. Accuracy estimation for an arbitrary
dc.relation.referencesencase of aerial survey. Proceedings of the Higher
dc.relation.referencesenEducational Institutions. Izvestia vuzov. Geodesy
dc.relation.referencesenand aerophotosurveying, 63(4), 400–406. doi: 10.30533/0536- 101X-2019-63-4-400-406. (in Russian)
dc.relation.referencesenBezmenov, V. M. & Safin, K. I. (2019). The accuracy
dc.relation.referencesenestimation of photogrammetric spatial intersection
dc.relation.referencesenfor random shooting case. The general approach to
dc.relation.referencesensolving the problem. Sovremennyye problemy
dc.relation.referencesendistantsionnogo zondirovaniya Zemli iz kosmosa, 16(6), 283–289. (in Russian).
dc.relation.referencesenBosak K. (2012). Secrets of UAV photomapping
dc.relation.referencesenby Krzysztof Bozak. 66p. URL:
dc.relation.referencesenhttp://s3.amazonaws.com/DroneMapper_US/documentation/pteryx-mapping-secrets.pdf.
dc.relation.referencesenChernyshev, M. & Kucenko, V. (2018). Assessment of
dc.relation.referencesenaccuracy of definition of position of the UAV by a
dc.relation.referencesendifference-ranging method in the moving system of
dc.relation.referencesena passive radar-location in air defense complexes
dc.relation.referencesenground forces of small range. Systemy
dc.relation.referencesenozbroyennya i viysʹkova tekhnika, 2(54), 61–66.
dc.relation.referencesendoi:10.30748/soivt.2018.54.08. (in Ukrainian).
dc.relation.referencesenDorozhynsʹkyy, O. Tukay, R. (2008). Photogrammetry.
dc.relation.referencesen−Lʹviv: Vydavnytstvo Natsionalʹnoho universytetu
dc.relation.referencesen"Lʹvivsʹka politekhnika", 332 p.
dc.relation.referencesenKim, H., Ryu, C., Kim, Z. & Zhen C. (2017). Study of
dc.relation.referencesenthe possibility of using quaternions to determine the
dc.relation.referencesenparameters of exterior orientation in photogrammetry.
dc.relation.referencesenNauchnyye issledovaniya, 5(16), 85–89. (in Russian).
dc.relation.referencesenKorshunov, R. A., Noskov, V. V. & Pogorelov, V. V. (2013). Off-center photogrammetric inverse serif .
dc.relation.referencesenIzvestiya vysshikh uchebnykh zavedeniy. Geodeziya i
dc.relation.referencesenaerofotos"yemka, (5), 67–71. (in Russian).
dc.relation.referencesenMazaheri, M. & Habib, A. (2015). Quaternion-Based
dc.relation.referencesenSolutions for the Single Photo Resection Problem.
dc.relation.referencesenPhotogrammetric Engineering & Remote Sensing, 81(3), 209–217. (in English).
dc.relation.referencesenMihaylov, A. P. (2012). Again about the choice of digital
dc.relation.referencesencameras to perform aerial survey with unmanned
dc.relation.referencesenvehicles. In Proceedings of the 12th International
dc.relation.referencesenScientific Conference "From image to map: digital
dc.relation.referencesenphotogrammetric technologies". (in Russian)
dc.relation.referencesenSchkil, M. I. (2005). Mathematical analysis u 2-kh
dc.relation.referencesentomakh Pidruchnyk u 2-kh ch., 3-tye vydannya,
dc.relation.referencesenpererobl. i dopovn., K., Vyshcha shk., 447 s. (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenSchultz, R. V., Voytenko, S. P., Krelshteinn, P. D. &
dc.relation.referencesenMalina, I. A. (2015). The issue of calculating points
dc.relation.referencesenpositioning accuracy for aerial photographs from
dc.relation.referencesenunmanned aerial vehicles. Inzhenerna heodeziya, (62), 124-136. (in Ukrainian).
dc.relation.referencesenSilva, A. M. & Silva, D. C. (2015). Resseção espacial em
dc.relation.referencesenfotogrametria com quatérnios (The photogrammetric
dc.relation.referencesenspatial resection using quaternion). Boletim de
dc.relation.referencesenCiências Geodésicas, 21(4), 2015, 750‒764. (in
dc.relation.referencesenSpanish).
dc.relation.referencesenSimineev, A. A. & Tarasova, E. I. (2012). Photogrammetric
dc.relation.referencesenresection: reliability of task solution. Vestnik SanktPeterburgskogo universiteta. Seriya 7: Geologiya.
dc.relation.referencesenGeografiya, (4), 129–134. (in Russian).
dc.relation.referencesenTsvetkov, V. Ja. (2011). Linear photogrammetry an
dc.relation.referencesenintersection. Nauki o Zemle: mezhdunarodnyy nauchnotekhnicheskiy i proizvodstvennyy zhurnal, (2), 44–46. (in Russian).
dc.relation.referencesenYanchuk, R. M. & Trokhymets, S. M. (2017). Creating
dc.relation.referencesencartographic basis for developing master plans
dc.relation.referencesenof settlements on materials of aerial surveys
dc.relation.referencesenusing unspecialized inexpensive UAV. Visnyk
dc.relation.referencesenNatsionalʹnoho universytetu vodnoho hospodarstva ta
dc.relation.referencesenpryrodokorystuvannya. Seriya "Tekhnichni nauky", 1 (77), 32‒39. (in Ukrainian).
dc.relation.urihttps://doi.org/10.1016/j.ijtst.2017.02.002
dc.relation.urihttp://s3.amazonaws.com/DroneMapper_US/documentation/pteryx-mapping-secrets.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectбезпілотний літальний апарат
dc.subjectелементи зовнішнього орієнтування
dc.subjectчасткові похідні
dc.subjectнелінійні рівняння
dc.subjectunmanned aerial vehicle
dc.subjectelements of external orientation
dc.subjectpartial derivatives
dc.subjectnonlinear equations
dc.subject.udc528.721
dc.titleDevelopment of a methodics for improving the accuracy of determination of spatial coordinates of object points during air surveillance from a UAV
dc.title.alternativeРозробка методики підвищення точності визначення просторових координат точок об’єктів при аерозніманні з БПЛА
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2020n92_Hlotov_V-Development_of_a_methodics_45-54.pdf
Size:
531.73 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2020n92_Hlotov_V-Development_of_a_methodics_45-54__COVER.png
Size:
522.69 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: