Development of a methodics for improving the accuracy of determination of spatial coordinates of object points during air surveillance from a UAV
dc.citation.epage | 54 | |
dc.citation.issue | 92 | |
dc.citation.journalTitle | Геодезія, картографія і аерофотознімання | |
dc.citation.spage | 45 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Глотов, В. | |
dc.contributor.author | Фис, М. | |
dc.contributor.author | Пащетник, О. | |
dc.contributor.author | Hlotov, V. | |
dc.contributor.author | Fys, M. | |
dc.contributor.author | Pashchetnyk, O. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-03-02T08:27:59Z | |
dc.date.available | 2023-03-02T08:27:59Z | |
dc.date.created | 2020-03-12 | |
dc.date.issued | 2020-03-12 | |
dc.description.abstract | Мета. Розробити оптимальний алгоритм, завдяки якому вдасться підвищити точність визначення координат місцевості при застосуванні аерознімального процесу з допомогою безпілотного літального апарату (БПЛА). Методика. Виконується мінімізація функції побудованої на підставі умови колінеарності, що дає уточнення елементів зовнішнього орієнтування (ЕЗО) цифрових зображень, а це у свою чергу приводить до підвищення точності просторових координат точок об’єктів. Причому, запропонована функція – це сума квадратів різниць між вирахуваними та даними спостережень опорних точок на відповідних цифрових зображеннях. Послідовність реалізації запропонованого алгоритму полягає в тому, що урахування умови мінімуму цієї функції дає можливість отримати систему шести нелінійних рівнянь стосовно ЕЗО. Процес визначення ЕЗО виконується двома способами: в першому випадку функцію G мінімізуємо безпосередньо одним з чисельних методів, а в другому – одержуємо як розв’язок системи рівнянь, що дає уточнені значення ЕЗО на підставі початкових наближень, отриманих безпосередньо з телеметрії БПЛА. Для контролю точності визначення ЕЗО застосовуються видозмінені умови мінімуму функції G в яких відсутні операції диференціювання. В результаті, отримаємо остаточні значення ЕЗО в момент знімання. Результати. Розроблений і апробований на макетних на реальних прикладах алгоритм, який дозволяє підвищити точність обчислення координат точок місцевості при застосуванні БПЛА для аерознімального процесу. Наукова новизна. Отримані формули, за допомогою яких підвищується точність створення топографічних матеріалів цифровим стереофотограмметричним методом. Практична значущість. Впровадження розробленого алгоритму дасть змогу суттєво підвищити точність опрацювання великомасштабних ортофотопланів та топографічних планів створених за матеріалами аерознімання з БПЛА. | |
dc.description.abstract | Purpose. The purpose of the paper is to develop an optimal algorithm that will increase the accuracy of determining the coordinates of the terrain when applying the aerial process using an unmanned aerial vehicle (UAV). Method. The study performs the minimization of function based on the condition of collinearity. It clarifies the elements of external orientation (EZO) of digital images and leads to an increase in the accuracy of the spatial coordinates of the points of objects. The proposed function is the sum of the squares of the differences between the calculated and measured reference points on the corresponding digital images. The sequence of implementation of the proposed algorithm includes taking into account the condition of the minimum of this function, which allows obtaining a system of six nonlinear equations for EZO. The process of determining EZO is performed in two ways: in the first case, the function G is minimized directly by one of the numerical methods, and in the second – obtained as a solution of a system of equations, which gives refined EZO values based on initial approximations obtained directly from UAV telemetry. Modified conditions of the minimum of the function G, in which there are no differentiation operations, are used to control the accuracy of EZO determination. As a result, we obtain the final values of the EZO at the time of shooting. Results. An algorithm has been developed and tested on mock-ups on real examples, which allows to increase the accuracy of calculating the coordinates of terrain points when using UAVs for the aerial photography process. Scientific novelty. The research obtained the formulas, which increase the accuracy of creating topographic materials by digital stereophotogrammetric method. Practical significance. The implementation of the developed algorithm will significantly increase the accuracy of processing large-scale orthophotos and topographic plans created on the basis of aerial photography from UAVs. | |
dc.format.extent | 45-54 | |
dc.format.pages | 10 | |
dc.identifier.citation | Hlotov V. Development of a methodics for improving the accuracy of determination of spatial coordinates of object points during air surveillance from a UAV / V. Hlotov, M. Fys, O. Pashchetnyk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2020. — No 92. — P. 45–54. | |
dc.identifier.citationen | Hlotov V. Development of a methodics for improving the accuracy of determination of spatial coordinates of object points during air surveillance from a UAV / V. Hlotov, M. Fys, O. Pashchetnyk // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2020. — No 92. — P. 45–54. | |
dc.identifier.doi | doi.org/10.23939/istcgcap2020.92.045 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57456 | |
dc.language.iso | en | |
dc.publisher | Видавництво Національного університету “Львівська політехніка” | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодезія, картографія і аерофотознімання, 92, 2020 | |
dc.relation.ispartof | Geodesy, cartography and aerial photography, 92, 2020 | |
dc.relation.references | Babinec, A. & Apeltauer, J. (2016). On accuracy of | |
dc.relation.references | position estimation from aerial imagery captured by lowflying UAVs. International Journal of Transportation | |
dc.relation.references | Science and Technology, 5(3), 152‒166. | |
dc.relation.references | https://doi.org/10.1016/j.ijtst.2017.02.002. (in English). | |
dc.relation.references | Berezina, S., Logachov, S. & Solonets, O. (2018). | |
dc.relation.references | Method of coordinate referencing of the images received | |
dc.relation.references | from UAV, by elements of external orientation Systemy | |
dc.relation.references | ozbroyennya i viysʹkova tekhnika, 1(53), 76–83. doi: 10.30748/soivt.2018.53.11. (in Ukrainian). | |
dc.relation.references | Bezmenov, V. M. (2014). The use of quaternions | |
dc.relation.references | in photogrammetry. Proceedings of the Higher | |
dc.relation.references | Educational Institutions. Izvestia vuzov. Geodesy | |
dc.relation.references | and aerophotosurveying, (5), 22–27. (in Russian) | |
dc.relation.references | Bezmenov, V. M., & Safin, K. I. (2019). Photogrammetric | |
dc.relation.references | intersection. Accuracy estimation for an arbitrary | |
dc.relation.references | case of aerial survey. Proceedings of the Higher | |
dc.relation.references | Educational Institutions. Izvestia vuzov. Geodesy | |
dc.relation.references | and aerophotosurveying, 63(4), 400–406. doi: 10.30533/0536- 101X-2019-63-4-400-406. (in Russian) | |
dc.relation.references | Bezmenov, V. M. & Safin, K. I. (2019). The accuracy | |
dc.relation.references | estimation of photogrammetric spatial intersection | |
dc.relation.references | for random shooting case. The general approach to | |
dc.relation.references | solving the problem. Sovremennyye problemy | |
dc.relation.references | distantsionnogo zondirovaniya Zemli iz kosmosa, 16(6), 283–289. (in Russian). | |
dc.relation.references | Bosak K. (2012). Secrets of UAV photomapping | |
dc.relation.references | by Krzysztof Bozak. 66p. URL: | |
dc.relation.references | http://s3.amazonaws.com/DroneMapper_US/documentation/pteryx-mapping-secrets.pdf. | |
dc.relation.references | Chernyshev, M. & Kucenko, V. (2018). Assessment of | |
dc.relation.references | accuracy of definition of position of the UAV by a | |
dc.relation.references | difference-ranging method in the moving system of | |
dc.relation.references | a passive radar-location in air defense complexes | |
dc.relation.references | ground forces of small range. Systemy | |
dc.relation.references | ozbroyennya i viysʹkova tekhnika, 2(54), 61–66. | |
dc.relation.references | doi:10.30748/soivt.2018.54.08. (in Ukrainian). | |
dc.relation.references | Dorozhynsʹkyy, O. Tukay, R. (2008). Photogrammetry. | |
dc.relation.references | −Lʹviv: Vydavnytstvo Natsionalʹnoho universytetu | |
dc.relation.references | “Lʹvivsʹka politekhnika”, 332 p. | |
dc.relation.references | Kim, H., Ryu, C., Kim, Z. & Zhen C. (2017). Study of | |
dc.relation.references | the possibility of using quaternions to determine the | |
dc.relation.references | parameters of exterior orientation in photogrammetry. | |
dc.relation.references | Nauchnyye issledovaniya, 5(16), 85–89. (in Russian). | |
dc.relation.references | Korshunov, R. A., Noskov, V. V. & Pogorelov, V. V. (2013). Off-center photogrammetric inverse serif . | |
dc.relation.references | Izvestiya vysshikh uchebnykh zavedeniy. Geodeziya i | |
dc.relation.references | aerofotos"yemka, (5), 67–71. (in Russian). | |
dc.relation.references | Mazaheri, M. & Habib, A. (2015). Quaternion-Based | |
dc.relation.references | Solutions for the Single Photo Resection Problem. | |
dc.relation.references | Photogrammetric Engineering & Remote Sensing, 81(3), 209–217. (in English). | |
dc.relation.references | Mihaylov, A. P. (2012). Again about the choice of digital | |
dc.relation.references | cameras to perform aerial survey with unmanned | |
dc.relation.references | vehicles. In Proceedings of the 12th International | |
dc.relation.references | Scientific Conference “From image to map: digital | |
dc.relation.references | photogrammetric technologies”. (in Russian) | |
dc.relation.references | Schkil, M. I. (2005). Mathematical analysis u 2-kh | |
dc.relation.references | tomakh Pidruchnyk u 2-kh ch., – 3-tye vydannya, | |
dc.relation.references | pererobl. i dopovn., K.: Vyshcha shk., 447 s. (in | |
dc.relation.references | Ukrainian). | |
dc.relation.references | Schultz, R. V., Voytenko, S. P., Krelshteinn, P. D. & | |
dc.relation.references | Malina, I. A. (2015). The issue of calculating points | |
dc.relation.references | positioning accuracy for aerial photographs from | |
dc.relation.references | unmanned aerial vehicles. Inzhenerna heodeziya, (62), 124-136. (in Ukrainian). | |
dc.relation.references | Silva, А. M. & Silva, D. C. (2015). Resseção espacial em | |
dc.relation.references | fotogrametria com quatérnios (The photogrammetric | |
dc.relation.references | spatial resection using quaternion). Boletim de | |
dc.relation.references | Ciências Geodésicas, 21(4), 2015, 750‒764. (in | |
dc.relation.references | Spanish). | |
dc.relation.references | Simineev, A. A. & Tarasova, E. I. (2012). Photogrammetric | |
dc.relation.references | resection: reliability of task solution. Vestnik SanktPeterburgskogo universiteta. Seriya 7: Geologiya. | |
dc.relation.references | Geografiya, (4), 129–134. (in Russian). | |
dc.relation.references | Tsvetkov, V. Ja. (2011). Linear photogrammetry an | |
dc.relation.references | intersection. Nauki o Zemle: mezhdunarodnyy nauchnotekhnicheskiy i proizvodstvennyy zhurnal, (2), 44–46. (in Russian). | |
dc.relation.references | Yanchuk, R. M. & Trokhymets, S. M. (2017). Creating | |
dc.relation.references | cartographic basis for developing master plans | |
dc.relation.references | of settlements on materials of aerial surveys | |
dc.relation.references | using unspecialized inexpensive UAV. Visnyk | |
dc.relation.references | Natsionalʹnoho universytetu vodnoho hospodarstva ta | |
dc.relation.references | pryrodokorystuvannya. Seriya «Tekhnichni nauky», 1 (77), 32‒39. (in Ukrainian). | |
dc.relation.referencesen | Babinec, A. & Apeltauer, J. (2016). On accuracy of | |
dc.relation.referencesen | position estimation from aerial imagery captured by lowflying UAVs. International Journal of Transportation | |
dc.relation.referencesen | Science and Technology, 5(3), 152‒166. | |
dc.relation.referencesen | https://doi.org/10.1016/j.ijtst.2017.02.002. (in English). | |
dc.relation.referencesen | Berezina, S., Logachov, S. & Solonets, O. (2018). | |
dc.relation.referencesen | Method of coordinate referencing of the images received | |
dc.relation.referencesen | from UAV, by elements of external orientation Systemy | |
dc.relation.referencesen | ozbroyennya i viysʹkova tekhnika, 1(53), 76–83. doi: 10.30748/soivt.2018.53.11. (in Ukrainian). | |
dc.relation.referencesen | Bezmenov, V. M. (2014). The use of quaternions | |
dc.relation.referencesen | in photogrammetry. Proceedings of the Higher | |
dc.relation.referencesen | Educational Institutions. Izvestia vuzov. Geodesy | |
dc.relation.referencesen | and aerophotosurveying, (5), 22–27. (in Russian) | |
dc.relation.referencesen | Bezmenov, V. M., & Safin, K. I. (2019). Photogrammetric | |
dc.relation.referencesen | intersection. Accuracy estimation for an arbitrary | |
dc.relation.referencesen | case of aerial survey. Proceedings of the Higher | |
dc.relation.referencesen | Educational Institutions. Izvestia vuzov. Geodesy | |
dc.relation.referencesen | and aerophotosurveying, 63(4), 400–406. doi: 10.30533/0536- 101X-2019-63-4-400-406. (in Russian) | |
dc.relation.referencesen | Bezmenov, V. M. & Safin, K. I. (2019). The accuracy | |
dc.relation.referencesen | estimation of photogrammetric spatial intersection | |
dc.relation.referencesen | for random shooting case. The general approach to | |
dc.relation.referencesen | solving the problem. Sovremennyye problemy | |
dc.relation.referencesen | distantsionnogo zondirovaniya Zemli iz kosmosa, 16(6), 283–289. (in Russian). | |
dc.relation.referencesen | Bosak K. (2012). Secrets of UAV photomapping | |
dc.relation.referencesen | by Krzysztof Bozak. 66p. URL: | |
dc.relation.referencesen | http://s3.amazonaws.com/DroneMapper_US/documentation/pteryx-mapping-secrets.pdf. | |
dc.relation.referencesen | Chernyshev, M. & Kucenko, V. (2018). Assessment of | |
dc.relation.referencesen | accuracy of definition of position of the UAV by a | |
dc.relation.referencesen | difference-ranging method in the moving system of | |
dc.relation.referencesen | a passive radar-location in air defense complexes | |
dc.relation.referencesen | ground forces of small range. Systemy | |
dc.relation.referencesen | ozbroyennya i viysʹkova tekhnika, 2(54), 61–66. | |
dc.relation.referencesen | doi:10.30748/soivt.2018.54.08. (in Ukrainian). | |
dc.relation.referencesen | Dorozhynsʹkyy, O. Tukay, R. (2008). Photogrammetry. | |
dc.relation.referencesen | −Lʹviv: Vydavnytstvo Natsionalʹnoho universytetu | |
dc.relation.referencesen | "Lʹvivsʹka politekhnika", 332 p. | |
dc.relation.referencesen | Kim, H., Ryu, C., Kim, Z. & Zhen C. (2017). Study of | |
dc.relation.referencesen | the possibility of using quaternions to determine the | |
dc.relation.referencesen | parameters of exterior orientation in photogrammetry. | |
dc.relation.referencesen | Nauchnyye issledovaniya, 5(16), 85–89. (in Russian). | |
dc.relation.referencesen | Korshunov, R. A., Noskov, V. V. & Pogorelov, V. V. (2013). Off-center photogrammetric inverse serif . | |
dc.relation.referencesen | Izvestiya vysshikh uchebnykh zavedeniy. Geodeziya i | |
dc.relation.referencesen | aerofotos"yemka, (5), 67–71. (in Russian). | |
dc.relation.referencesen | Mazaheri, M. & Habib, A. (2015). Quaternion-Based | |
dc.relation.referencesen | Solutions for the Single Photo Resection Problem. | |
dc.relation.referencesen | Photogrammetric Engineering & Remote Sensing, 81(3), 209–217. (in English). | |
dc.relation.referencesen | Mihaylov, A. P. (2012). Again about the choice of digital | |
dc.relation.referencesen | cameras to perform aerial survey with unmanned | |
dc.relation.referencesen | vehicles. In Proceedings of the 12th International | |
dc.relation.referencesen | Scientific Conference "From image to map: digital | |
dc.relation.referencesen | photogrammetric technologies". (in Russian) | |
dc.relation.referencesen | Schkil, M. I. (2005). Mathematical analysis u 2-kh | |
dc.relation.referencesen | tomakh Pidruchnyk u 2-kh ch., 3-tye vydannya, | |
dc.relation.referencesen | pererobl. i dopovn., K., Vyshcha shk., 447 s. (in | |
dc.relation.referencesen | Ukrainian). | |
dc.relation.referencesen | Schultz, R. V., Voytenko, S. P., Krelshteinn, P. D. & | |
dc.relation.referencesen | Malina, I. A. (2015). The issue of calculating points | |
dc.relation.referencesen | positioning accuracy for aerial photographs from | |
dc.relation.referencesen | unmanned aerial vehicles. Inzhenerna heodeziya, (62), 124-136. (in Ukrainian). | |
dc.relation.referencesen | Silva, A. M. & Silva, D. C. (2015). Resseção espacial em | |
dc.relation.referencesen | fotogrametria com quatérnios (The photogrammetric | |
dc.relation.referencesen | spatial resection using quaternion). Boletim de | |
dc.relation.referencesen | Ciências Geodésicas, 21(4), 2015, 750‒764. (in | |
dc.relation.referencesen | Spanish). | |
dc.relation.referencesen | Simineev, A. A. & Tarasova, E. I. (2012). Photogrammetric | |
dc.relation.referencesen | resection: reliability of task solution. Vestnik SanktPeterburgskogo universiteta. Seriya 7: Geologiya. | |
dc.relation.referencesen | Geografiya, (4), 129–134. (in Russian). | |
dc.relation.referencesen | Tsvetkov, V. Ja. (2011). Linear photogrammetry an | |
dc.relation.referencesen | intersection. Nauki o Zemle: mezhdunarodnyy nauchnotekhnicheskiy i proizvodstvennyy zhurnal, (2), 44–46. (in Russian). | |
dc.relation.referencesen | Yanchuk, R. M. & Trokhymets, S. M. (2017). Creating | |
dc.relation.referencesen | cartographic basis for developing master plans | |
dc.relation.referencesen | of settlements on materials of aerial surveys | |
dc.relation.referencesen | using unspecialized inexpensive UAV. Visnyk | |
dc.relation.referencesen | Natsionalʹnoho universytetu vodnoho hospodarstva ta | |
dc.relation.referencesen | pryrodokorystuvannya. Seriya "Tekhnichni nauky", 1 (77), 32‒39. (in Ukrainian). | |
dc.relation.uri | https://doi.org/10.1016/j.ijtst.2017.02.002 | |
dc.relation.uri | http://s3.amazonaws.com/DroneMapper_US/documentation/pteryx-mapping-secrets.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.subject | безпілотний літальний апарат | |
dc.subject | елементи зовнішнього орієнтування | |
dc.subject | часткові похідні | |
dc.subject | нелінійні рівняння | |
dc.subject | unmanned aerial vehicle | |
dc.subject | elements of external orientation | |
dc.subject | partial derivatives | |
dc.subject | nonlinear equations | |
dc.subject.udc | 528.721 | |
dc.title | Development of a methodics for improving the accuracy of determination of spatial coordinates of object points during air surveillance from a UAV | |
dc.title.alternative | Розробка методики підвищення точності визначення просторових координат точок об’єктів при аерозніманні з БПЛА | |
dc.type | Article |
Files
License bundle
1 - 1 of 1