Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation
dc.citation.epage | 156 | |
dc.citation.issue | 2 | |
dc.citation.spage | 150 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Центр математичного моделювання ІППММ Національної академії наук України | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Centre of Mathematical Modelling, IAPMM of National Academy of Sciences of Ukraine | |
dc.contributor.author | Гайвась, Б. І. | |
dc.contributor.author | Дмитрук, В. А. | |
dc.contributor.author | Семерак, М. М. | |
dc.contributor.author | Римар, Т. І. | |
dc.contributor.author | Gayvas, B. I. | |
dc.contributor.author | Dmytruk, V. A. | |
dc.contributor.author | Semerak, M. M. | |
dc.contributor.author | Rymar, T. I. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-10-24T07:21:50Z | |
dc.date.available | 2023-10-24T07:21:50Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | Розглянуто плоску задачу сушіння циліндричного бруса в усередненій постановці. Коефіцієнти температуропровідності виражено через пористість матеріалу деревини, густину компонентів пари, повітря та скелету. Задача про взаємний розподіл фаз під час сушіння деревини розв’язується з використанням рівняння балансу енергії. Від правильного вибору та дотримання параметрів сушильного середовища залежать показники процесу сушіння матеріалу. | |
dc.description.abstract | The plain problem of drying of a cylindrical timber beam in the average statement is considered. The thermal diffusivity coefficients are expressed in terms of the porosity of the timber, the density of the components of vapour, air, and timber skeleton. The problem of mutual phase distribution during drying of timber has been solved using the energy balance equation. The indicators of the drying process of the material depend on the correct choice and observance of the parameters of the drying medium. | |
dc.format.extent | 150-156 | |
dc.format.pages | 7 | |
dc.identifier.citation | Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation / B. I. Gayvas, V. A. Dmytruk, M. M. Semerak, T. I. Rymar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 150–156. | |
dc.identifier.citationen | Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation / B. I. Gayvas, V. A. Dmytruk, M. M. Semerak, T. I. Rymar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 150–156. | |
dc.identifier.doi | doi.org/10.23939/mmc2021.02.150 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60389 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (8), 2021 | |
dc.relation.references | [1] Gnativ Z. Ya., Ivashchuk O. S., Hrynchuk Yu. M., Reutskyi V. V., Koval I. Z., Vashkurak Yu. Z. Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing. 7 (1), 22–28 (2020). | |
dc.relation.references | [2] Kaletnik G., Tsurkan O., Rymar T., Stanislavchuk O. Determination of the kinetics of the process of pumpkin seeds vibrational convective drying. Eastern-European Journal of Enterprise Technologies. 1 (8), 50–57 (2020). | |
dc.relation.references | [3] Hayvas B., Dmytruk V., Torskyy A., Dmytruk A. On methods of mathematical modelling of drying dispersed materials. Mathematical Modeling and Computing. 4 (2), 139–147 (2017). | |
dc.relation.references | [4] Ugolev B., Skuratov N. Modeling the wood drying process. Collection of scientific works of MLTI. 247, 133–41 (1992). | |
dc.relation.references | [5] Shubin G. Drying and heat treatment of wood. Moscow, Forest Industry (1990), (in Russian). | |
dc.relation.references | [6] Tikhonov A., Samarskii A. Equations of mathematical physics. Moscow, Nauka (1972), (in Russian). | |
dc.relation.references | [7] Markovych B. Investigation of effective potential of electron-ion interaction in semibounded metal. Mathematical Modeling and Computing. 5 (2), 184–192 (2018). | |
dc.relation.references | [8] Gupta S. C. The Classical Stefan Problem. 2nd edition. Elsevier, USA, 750 (2017). | |
dc.relation.references | [9] Kostrobij P., Markovych B., Viznovych B., Zelinska I., Tokarchuk M. Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations. Mathematical Modeling and Computing. 6(1), 58–68 (2019). | |
dc.relation.references | [10] Kostrobij P. P., Markovych B. M., Ryzha I. A., Tokarchuk M. V. Generalized kinetic equation with spatiotemporal nonlocality. Mathematical Modeling and Computing. 6(2), 289–296 (2019). | |
dc.relation.references | [11] Sokolovskyy Y., Levkovych M., Sokolovskyy I. The study of heat transfer and stress-strain state of a material, taking into account its fractal structure. Mathematical Modeling and Computing. 7(2), 400–409 (2020). | |
dc.relation.references | [12] Carslaw H. S., Jaeger J. C. Conduction of Heat in Solids. Oxford University, London (1959). | |
dc.relation.references | [13] Lenyuk M., Mikhalevska G. Integral transformations of the Kontorovich-Lebedev type. Chernivtsi Prut. (2002), (in Ukrainian). | |
dc.relation.references | [14] Fedotkin I. M., Burlyai I. Yu., Ryumshin N. A. Mathematical modeling of technological processes. Kiev, Technics (2002), (in Russian). | |
dc.relation.referencesen | [1] Gnativ Z. Ya., Ivashchuk O. S., Hrynchuk Yu. M., Reutskyi V. V., Koval I. Z., Vashkurak Yu. Z. Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing. 7 (1), 22–28 (2020). | |
dc.relation.referencesen | [2] Kaletnik G., Tsurkan O., Rymar T., Stanislavchuk O. Determination of the kinetics of the process of pumpkin seeds vibrational convective drying. Eastern-European Journal of Enterprise Technologies. 1 (8), 50–57 (2020). | |
dc.relation.referencesen | [3] Hayvas B., Dmytruk V., Torskyy A., Dmytruk A. On methods of mathematical modelling of drying dispersed materials. Mathematical Modeling and Computing. 4 (2), 139–147 (2017). | |
dc.relation.referencesen | [4] Ugolev B., Skuratov N. Modeling the wood drying process. Collection of scientific works of MLTI. 247, 133–41 (1992). | |
dc.relation.referencesen | [5] Shubin G. Drying and heat treatment of wood. Moscow, Forest Industry (1990), (in Russian). | |
dc.relation.referencesen | [6] Tikhonov A., Samarskii A. Equations of mathematical physics. Moscow, Nauka (1972), (in Russian). | |
dc.relation.referencesen | [7] Markovych B. Investigation of effective potential of electron-ion interaction in semibounded metal. Mathematical Modeling and Computing. 5 (2), 184–192 (2018). | |
dc.relation.referencesen | [8] Gupta S. C. The Classical Stefan Problem. 2nd edition. Elsevier, USA, 750 (2017). | |
dc.relation.referencesen | [9] Kostrobij P., Markovych B., Viznovych B., Zelinska I., Tokarchuk M. Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations. Mathematical Modeling and Computing. 6(1), 58–68 (2019). | |
dc.relation.referencesen | [10] Kostrobij P. P., Markovych B. M., Ryzha I. A., Tokarchuk M. V. Generalized kinetic equation with spatiotemporal nonlocality. Mathematical Modeling and Computing. 6(2), 289–296 (2019). | |
dc.relation.referencesen | [11] Sokolovskyy Y., Levkovych M., Sokolovskyy I. The study of heat transfer and stress-strain state of a material, taking into account its fractal structure. Mathematical Modeling and Computing. 7(2), 400–409 (2020). | |
dc.relation.referencesen | [12] Carslaw H. S., Jaeger J. C. Conduction of Heat in Solids. Oxford University, London (1959). | |
dc.relation.referencesen | [13] Lenyuk M., Mikhalevska G. Integral transformations of the Kontorovich-Lebedev type. Chernivtsi Prut. (2002), (in Ukrainian). | |
dc.relation.referencesen | [14] Fedotkin I. M., Burlyai I. Yu., Ryumshin N. A. Mathematical modeling of technological processes. Kiev, Technics (2002), (in Russian). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | пориста деревина | |
dc.subject | квазігомогенне наближення | |
dc.subject | інтегральне перетворення | |
dc.subject | фазовий перехід | |
dc.subject | циліндрична функція | |
dc.subject | porous timber | |
dc.subject | quasi-homogeneous approximation | |
dc.subject | integral transformation | |
dc.subject | phase transition | |
dc.subject | cylindrical function | |
dc.title | Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation | |
dc.title.alternative | Побудова розв’язку лінійної задачі Стефана для осушення циліндричного бруса в квазіусередненій постановці | |
dc.type | Article |
Files
License bundle
1 - 1 of 1