Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation

dc.citation.epage156
dc.citation.issue2
dc.citation.spage150
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЦентр математичного моделювання ІППММ Національної академії наук України
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationCentre of Mathematical Modelling, IAPMM of National Academy of Sciences of Ukraine
dc.contributor.authorГайвась, Б. І.
dc.contributor.authorДмитрук, В. А.
dc.contributor.authorСемерак, М. М.
dc.contributor.authorРимар, Т. І.
dc.contributor.authorGayvas, B. I.
dc.contributor.authorDmytruk, V. A.
dc.contributor.authorSemerak, M. M.
dc.contributor.authorRymar, T. I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-24T07:21:50Z
dc.date.available2023-10-24T07:21:50Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractРозглянуто плоску задачу сушіння циліндричного бруса в усередненій постановці. Коефіцієнти температуропровідності виражено через пористість матеріалу деревини, густину компонентів пари, повітря та скелету. Задача про взаємний розподіл фаз під час сушіння деревини розв’язується з використанням рівняння балансу енергії. Від правильного вибору та дотримання параметрів сушильного середовища залежать показники процесу сушіння матеріалу.
dc.description.abstractThe plain problem of drying of a cylindrical timber beam in the average statement is considered. The thermal diffusivity coefficients are expressed in terms of the porosity of the timber, the density of the components of vapour, air, and timber skeleton. The problem of mutual phase distribution during drying of timber has been solved using the energy balance equation. The indicators of the drying process of the material depend on the correct choice and observance of the parameters of the drying medium.
dc.format.extent150-156
dc.format.pages7
dc.identifier.citationSolving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation / B. I. Gayvas, V. A. Dmytruk, M. M. Semerak, T. I. Rymar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 150–156.
dc.identifier.citationenSolving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation / B. I. Gayvas, V. A. Dmytruk, M. M. Semerak, T. I. Rymar // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 2. — P. 150–156.
dc.identifier.doidoi.org/10.23939/mmc2021.02.150
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60389
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (8), 2021
dc.relation.references[1] Gnativ Z. Ya., Ivashchuk O. S., Hrynchuk Yu. M., Reutskyi V. V., Koval I. Z., Vashkurak Yu. Z. Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing. 7 (1), 22–28 (2020).
dc.relation.references[2] Kaletnik G., Tsurkan O., Rymar T., Stanislavchuk O. Determination of the kinetics of the process of pumpkin seeds vibrational convective drying. Eastern-European Journal of Enterprise Technologies. 1 (8), 50–57 (2020).
dc.relation.references[3] Hayvas B., Dmytruk V., Torskyy A., Dmytruk A. On methods of mathematical modelling of drying dispersed materials. Mathematical Modeling and Computing. 4 (2), 139–147 (2017).
dc.relation.references[4] Ugolev B., Skuratov N. Modeling the wood drying process. Collection of scientific works of MLTI. 247, 133–41 (1992).
dc.relation.references[5] Shubin G. Drying and heat treatment of wood. Moscow, Forest Industry (1990), (in Russian).
dc.relation.references[6] Tikhonov A., Samarskii A. Equations of mathematical physics. Moscow, Nauka (1972), (in Russian).
dc.relation.references[7] Markovych B. Investigation of effective potential of electron-ion interaction in semibounded metal. Mathematical Modeling and Computing. 5 (2), 184–192 (2018).
dc.relation.references[8] Gupta S. C. The Classical Stefan Problem. 2nd edition. Elsevier, USA, 750 (2017).
dc.relation.references[9] Kostrobij P., Markovych B., Viznovych B., Zelinska I., Tokarchuk M. Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations. Mathematical Modeling and Computing. 6(1), 58–68 (2019).
dc.relation.references[10] Kostrobij P. P., Markovych B. M., Ryzha I. A., Tokarchuk M. V. Generalized kinetic equation with spatiotemporal nonlocality. Mathematical Modeling and Computing. 6(2), 289–296 (2019).
dc.relation.references[11] Sokolovskyy Y., Levkovych M., Sokolovskyy I. The study of heat transfer and stress-strain state of a material, taking into account its fractal structure. Mathematical Modeling and Computing. 7(2), 400–409 (2020).
dc.relation.references[12] Carslaw H. S., Jaeger J. C. Conduction of Heat in Solids. Oxford University, London (1959).
dc.relation.references[13] Lenyuk M., Mikhalevska G. Integral transformations of the Kontorovich-Lebedev type. Chernivtsi Prut. (2002), (in Ukrainian).
dc.relation.references[14] Fedotkin I. M., Burlyai I. Yu., Ryumshin N. A. Mathematical modeling of technological processes. Kiev, Technics (2002), (in Russian).
dc.relation.referencesen[1] Gnativ Z. Ya., Ivashchuk O. S., Hrynchuk Yu. M., Reutskyi V. V., Koval I. Z., Vashkurak Yu. Z. Modeling of internal diffusion mass transfer during filtration drying of capillary-porous material. Mathematical Modeling and Computing. 7 (1), 22–28 (2020).
dc.relation.referencesen[2] Kaletnik G., Tsurkan O., Rymar T., Stanislavchuk O. Determination of the kinetics of the process of pumpkin seeds vibrational convective drying. Eastern-European Journal of Enterprise Technologies. 1 (8), 50–57 (2020).
dc.relation.referencesen[3] Hayvas B., Dmytruk V., Torskyy A., Dmytruk A. On methods of mathematical modelling of drying dispersed materials. Mathematical Modeling and Computing. 4 (2), 139–147 (2017).
dc.relation.referencesen[4] Ugolev B., Skuratov N. Modeling the wood drying process. Collection of scientific works of MLTI. 247, 133–41 (1992).
dc.relation.referencesen[5] Shubin G. Drying and heat treatment of wood. Moscow, Forest Industry (1990), (in Russian).
dc.relation.referencesen[6] Tikhonov A., Samarskii A. Equations of mathematical physics. Moscow, Nauka (1972), (in Russian).
dc.relation.referencesen[7] Markovych B. Investigation of effective potential of electron-ion interaction in semibounded metal. Mathematical Modeling and Computing. 5 (2), 184–192 (2018).
dc.relation.referencesen[8] Gupta S. C. The Classical Stefan Problem. 2nd edition. Elsevier, USA, 750 (2017).
dc.relation.referencesen[9] Kostrobij P., Markovych B., Viznovych B., Zelinska I., Tokarchuk M. Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations. Mathematical Modeling and Computing. 6(1), 58–68 (2019).
dc.relation.referencesen[10] Kostrobij P. P., Markovych B. M., Ryzha I. A., Tokarchuk M. V. Generalized kinetic equation with spatiotemporal nonlocality. Mathematical Modeling and Computing. 6(2), 289–296 (2019).
dc.relation.referencesen[11] Sokolovskyy Y., Levkovych M., Sokolovskyy I. The study of heat transfer and stress-strain state of a material, taking into account its fractal structure. Mathematical Modeling and Computing. 7(2), 400–409 (2020).
dc.relation.referencesen[12] Carslaw H. S., Jaeger J. C. Conduction of Heat in Solids. Oxford University, London (1959).
dc.relation.referencesen[13] Lenyuk M., Mikhalevska G. Integral transformations of the Kontorovich-Lebedev type. Chernivtsi Prut. (2002), (in Ukrainian).
dc.relation.referencesen[14] Fedotkin I. M., Burlyai I. Yu., Ryumshin N. A. Mathematical modeling of technological processes. Kiev, Technics (2002), (in Russian).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectпориста деревина
dc.subjectквазігомогенне наближення
dc.subjectінтегральне перетворення
dc.subjectфазовий перехід
dc.subjectциліндрична функція
dc.subjectporous timber
dc.subjectquasi-homogeneous approximation
dc.subjectintegral transformation
dc.subjectphase transition
dc.subjectcylindrical function
dc.titleSolving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation
dc.title.alternativeПобудова розв’язку лінійної задачі Стефана для осушення циліндричного бруса в квазіусередненій постановці
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v8n2_Gayvas_B_I-Solving_Stefans_linear_150-156.pdf
Size:
793.93 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v8n2_Gayvas_B_I-Solving_Stefans_linear_150-156__COVER.png
Size:
421.98 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: